Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 18(1): e1010025, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35081133

RESUMO

Genotoxic stress during DNA replication constitutes a serious threat to genome integrity and causes human diseases. Defects at different steps of DNA metabolism are known to induce replication stress, but the contribution of other aspects of cellular metabolism is less understood. We show that aminopeptidase P (APP1), a metalloprotease involved in the catabolism of peptides containing proline residues near their N-terminus, prevents replication-associated genome instability. Functional analysis of C. elegans mutants lacking APP-1 demonstrates that germ cells display replication defects including reduced proliferation, cell cycle arrest, and accumulation of mitotic DSBs. Despite these defects, app-1 mutants are competent in repairing DSBs induced by gamma irradiation, as well as SPO-11-dependent DSBs that initiate meiotic recombination. Moreover, in the absence of SPO-11, spontaneous DSBs arising in app-1 mutants are repaired as inter-homologue crossover events during meiosis, confirming that APP-1 is not required for homologous recombination. Thus, APP-1 prevents replication stress without having an apparent role in DSB repair. Depletion of APP1 (XPNPEP1) also causes DSB accumulation in mitotically-proliferating human cells, suggesting that APP1's role in genome stability is evolutionarily conserved. Our findings uncover an unexpected role for APP1 in genome stability, suggesting functional connections between aminopeptidase-mediated protein catabolism and DNA replication.


Assuntos
Aminopeptidases/genética , Caenorhabditis elegans/genética , Instabilidade Genômica , Aminopeptidases/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular , Proliferação de Células , Replicação do DNA , Prolina/metabolismo
2.
Biomacromolecules ; 23(6): 2362-2373, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549247

RESUMO

Interaction between the anionic phosphodiester backbone of DNA/RNA and polycations can be exploited as a means of delivering genetic material for therapeutic and agrochemical applications. In this work, quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-poly(N,N-dimethylacrylamide) (PQDMAEMA-b-PDMAm) double hydrophilic block copolymers (DHBCs) were synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization as nonviral delivery vehicles for double-stranded RNA. The assembly of DHBCs and dsRNA forms distinct polyplexes that were thoroughly characterized to establish a relationship between the length of the uncharged poly(N,N-dimethylacrylamide) (PDMA) block and the polyplex size, complexation efficiency, and colloidal stability. Dynamic light scattering reveals the formation of smaller polyplexes with increasing PDMA lengths, while gel electrophoresis confirms that these polyplexes require higher N/P ratio for full complexation. DHBC polyplexes exhibit enhanced stability in low ionic strength environments in comparison to homopolymer-based polyplexes. In vitro enzymatic degradation assays demonstrate that both homopolymer and DHBC polymers efficiently protect dsRNA from degradation by RNase A enzyme.


Assuntos
Polímeros , RNA de Cadeia Dupla , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Polimerização , Polímeros/química
3.
Biochem J ; 476(22): 3505-3520, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31682720

RESUMO

The mosquitoes of the Anopheles and Aedes genus are some of the most deadly insects to humans because of their effectiveness as vectors of malaria and a range of arboviruses, including yellow fever, dengue, chikungunya, West Nile and Zika. The use of insecticides from different chemical classes is a key component of the integrated strategy against An. gambiae and Ae. aegypti, but the problem of insecticide resistance means that new compounds with different modes of action are urgently needed to replace chemicals that fail to control resistant mosquito populations. We have previously shown that feeding inhibitors of peptidyl dipeptidase A to both An. gambiae and Ae. aegypti mosquito larvae lead to stunted growth and mortality. However, these compounds were designed to inhibit the mammalian form of the enzyme (angiotensin-converting enzyme, ACE) and hence can have lower potency and lack selectivity as inhibitors of the insect peptidase. Thus, for the development of inhibitors of practical value in killing mosquito larvae, it is important to design new compounds that are both potent and highly selective. Here, we report the first structures of AnoACE2 from An. gambiae in its native form and with a bound human ACE inhibitor fosinoprilat. A comparison of these structures with human ACE (sACE) and an insect ACE homologue from Drosophila melanogaster (AnCE) revealed that the AnoACE2 structure is more similar to AnCE. In addition, important elements that differ in these structures provide information that could potentially be utilised in the design of chemical leads for selective mosquitocide development.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Anopheles/enzimologia , Proteínas de Insetos/química , Peptidil Dipeptidase A/química , Aedes/química , Aedes/enzimologia , Aedes/genética , Animais , Anopheles/química , Anopheles/genética , Anopheles/crescimento & desenvolvimento , Drosophila melanogaster/química , Drosophila melanogaster/enzimologia , Fosinopril/análogos & derivados , Fosinopril/química , Humanos , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Inseticidas/química , Larva/química , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Modelos Moleculares , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo
4.
Neurochem Res ; 44(6): 1508-1516, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30661229

RESUMO

Sleep is a highly conserved state in animals, but its regulation and physiological function is poorly understood. Drosophila melanogaster is an excellent model for studying sleep regulation and has been used to investigate how sex and social interactions can influence wake-sleep profiles. Previously we have shown that copulation has a profound effect on day time activity and quiescence (siesta sleep) of individual post-mated females. Here we have the studied the effect of mating and the transfer of the 36 amino acid sex peptide in the seminal fluid on the behavior of mated female Drosophila populations, where there will be on-going social interactions. The locomotor activity and sleep patterns of virgin and post-mated female D. melanogaster from three laboratory strains (Oregon-R, Canton-S and Dahomey) were recorded in social groups of 20 individuals in a 12-12 h light-dark cycle. Virgin female populations from all three fly strains displayed consolidated periods of low activity in between two sharp peaks of activity, corresponding to lights-on and lights-off. Similar light-correlated peaks were recorded for the mated female populations, however, the low afternoon activity and siesta seen in virgin populations was abolished after mating in all three strains. In contrast, night activity appeared unaffected. This post-mating effect was sustained for several days and was dependent on the male SP acting as a pheromone. Evidence from mixed populations of virgin and mated females suggests that the siesta of non-mated females is not easily disturbed by the presence of highly active post-mated females.


Assuntos
Comportamento Animal/fisiologia , Copulação/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Peptídeos/fisiologia , Sono/fisiologia , Comportamento Social , Animais , Ritmo Circadiano/fisiologia , Feminino , Peptídeos e Proteínas de Sinalização Intercelular , Locomoção/fisiologia , Masculino
5.
Gen Comp Endocrinol ; 278: 50-57, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30077792

RESUMO

There is much interest in targeting neuropeptide signaling for the development of new and environmentally friendly insect control chemicals. In this study we have focused attention on the peptidergic control of the adult crop of Delia radicum (cabbage root fly), an important pest of brassicas in European agriculture. The dipteran crop is a muscular organ formed from the foregut of the digestive tract and plays a vital role in the processing of food in adult flies. We have shown using direct tissue profiling by MALDI-TOF mass spectrometry that the decapeptide myosuppressin (TDVDHVFLRFamide) is present in the crop nerve bundle and that application of this peptide to the crop potently inhibits the spontaneous contractions of the muscular lobes with an IC50 of 4.4 × 10-8 M. The delivery of myosuppressin either by oral administration or by injection had no significant detrimental effect on the adult fly. This failure to elicit a response is possibly due to the susceptibility of the peptide to degradative peptidases that cleave the parent peptide to inactive fragments. Indeed, we show that the crop of D. radicum is a source of neuropeptide-degrading endo- and amino-peptidases. In contrast, feeding benzethonium chloride, a non-peptide agonist of myosuppressin, reduced feeding rate and increased the rate of mortality of adult D. radicum. Current results are indicative of a key role for myosuppressin in the regulation of crop physiology and the results achieved during this project provide the basis for subsequent studies aimed at developing insecticidal molecules targeting the peptidergic control of feeding and food digestion in this pest species.


Assuntos
Estruturas Animais/anatomia & histologia , Brassica/parasitologia , Dípteros/anatomia & histologia , Sequência de Aminoácidos , Estruturas Animais/inervação , Animais , Dípteros/fisiologia , Contração Muscular , Peptídeo Hidrolases/metabolismo , Peptídeos/química
6.
J Exp Biol ; 218(Pt 23): 3855-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26486360

RESUMO

The polyphagous Drosophila suzukii is a highly invasive species that causes extensive damage to a wide range of berry and stone fruit crops. A better understanding of its biology and especially its behaviour will aid the development of new control strategies. We investigated the locomotor behaviour of D. suzukii in a semi-natural environment resembling a typical summer in northern England and show that adult female D. suzukii are at least 4-fold more active during daylight hours than adult males. This result was reproduced in several laboratory environments and was shown to be a robust feature of mated, but not virgin, female flies. Both males and virgin females kept on a 12 h light:12 h dark (12LD) cycle and constant temperature displayed night-time inactivity (sleep) followed by weak activity in the morning, an afternoon period of quiescence (siesta) and then a prominent evening peak of activity. Both the siesta and the sharp evening peak at lights off were severely reduced in females after mating. Flies of either sex entrained in 12LD displayed a circadian pattern of activity in constant darkness confirming the importance of an endogenous clock in regulating adult activity. This response of females to mating is similar to that elicited in female Drosophila melanogaster by the male sex peptide (SP). We used mass spectrometry to identify a molecular ion (m/z, 5145) corresponding to the poly-hydroxylated SP of D. suzukii and to show that this molecule is transferred to the female reproductive tract during copulation. We propose that the siesta experienced by male and virgin female D. suzukii is an adaptation to avoid unnecessary exposure to the afternoon sun, but that mated females faced with the challenge of obtaining resources for egg production and finding oviposition sites take greater risks, and we suggest that the change in female behaviour is induced by the male SP.


Assuntos
Drosophila/fisiologia , Animais , Ritmo Circadiano , Copulação/fisiologia , Escuridão , Proteínas de Drosophila/análise , Feminino , Locomoção , Masculino , Peptídeos/análise , Caracteres Sexuais , Sono/fisiologia
7.
Pest Manag Sci ; 80(2): 669-677, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759365

RESUMO

BACKGROUND: Chemical insecticides are an important tool to control damaging pest infestations. However, lack of species specificity, the rise of resistance and the demand for biological alternatives with improved ecotoxicity profiles means that chemicals with new modes of action are required. RNA interference (RNAi)-based strategies using double-stranded RNA (dsRNA) as a species-specific bio-insecticide offer an exquisite solution that addresses these issues. Many species, such as the fruit pest Drosophila suzukii, do not exhibit RNAi when dsRNA is orally administered due to degradation by gut nucleases and slow cellular uptake pathways. Thus, delivery vehicles that protect and deliver dsRNA are highly desirable. RESULTS: In this work, we demonstrate the complexation of D. suzukii-specific dsRNA for degradation of vha26 mRNA with bespoke diblock copolymers. We study the ex vivo protection of dsRNA against enzymatic degradation by gut enzymes, which demonstrates the efficiency of this system. Flow cytometry then investigates the cellular uptake of Cy3-labelled dsRNA, showing a 10-fold increase in the mean fluorescence intensity of cells treated with polyplexes. The polymer/dsRNA polyplexes induced a significant 87% decrease in the odds of survival of D. suzukii larvae following oral feeding only when formed with a diblock copolymer containing a long neutral block length (1:2 cationic block/neutral block). However, there was no toxicity when fed to the closely related Drosophila melanogaster. CONCLUSION: We provide evidence that dsRNA complexation with diblock copolymers is a promising strategy for RNAi-based species-specific pest control, but optimisation of polymer composition is essential for RNAi success. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Inseticidas , Polímeros , Animais , Polímeros/metabolismo , Inseticidas/farmacologia , RNA de Cadeia Dupla/genética , Drosophila melanogaster/genética , Interferência de RNA
8.
Biomolecules ; 13(7)2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37509168

RESUMO

A novel protein, PID-5, has been shown to be a requirement for germline immortality and has recently been implicated in RNA-induced epigenetic silencing in the Caenorhabditis elegans embryo. Importantly, it has been shown to contain both an eTudor and aminopeptidase P-related domain. However, the silencing mechanism has not yet been fully characterised. In this study, bioinformatic tools were used to compare pre-existing aminopeptidase P molecular structures to the AlphaFold2-predicted aminopeptidase P-related domain of PID-5 (PID-5 APP-RD). Structural homology, metal composition, inhibitor-bonding interactions, and the potential for dimerisation were critically assessed through computational techniques, including structural superimposition and protein-ligand docking. Results from this research suggest that the metallopeptidase-like domain shares high structural homology with known aminopeptidase P enzymes and possesses the canonical 'pita-bread fold'. However, the absence of conserved metal-coordinating residues indicates that only a single Zn2+ may be bound at the active site. The PID-5 APP-RD may form transient interactions with a known aminopeptidase P inhibitor and may therefore recognise substrates in a comparable way to the known structures. However, loss of key catalytic residues suggests the domain will be inactive. Further evidence suggests that heterodimerisation with C. elegans aminopeptidase P is feasible and therefore PID-5 is predicted to regulate proteolytic cleavage in the silencing pathway. PID-5 may interact with PID-2 to bring aminopeptidase P activity to the Z-granule, where it could influence WAGO-4 activity to ensure the balanced production of 22G-RNA signals for transgenerational silencing. Targeted experiments into APPs implicated in malaria and cancer are required in order to build upon the biological and therapeutic significance of this research.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Domínios Proteicos , Animais , Aminopeptidases/química , Aminopeptidases/ultraestrutura , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Metais/metabolismo , RNA/metabolismo , Domínios Proteicos/genética , Domínios Proteicos/fisiologia
9.
FEBS J ; 289(21): 6659-6671, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35653492

RESUMO

Human angiotensin I-converting enzyme (ACE) has two isoforms, somatic ACE (sACE) and testis ACE (tACE). The functions of sACE are widespread, with its involvement in blood pressure regulation most extensively studied. sACE is composed of an N-domain (nACE) and a C-domain (cACE), both catalytically active but have significant structural differences, resulting in different substrate specificities. Even though ACE inhibitors are used clinically, they need much improvement because of serious side effects seen in patients (~ 25-30%) with long-term treatment due to nonselective inhibition of nACE and cACE. Investigation into the distinguishing structural features of each domain is therefore of vital importance for the development of domain-specific inhibitors with minimal side effects. Here, we report kinetic data and high-resolution crystal structures of both nACE (1.75 Å) and cACE (1.85 Å) in complex with fosinoprilat, a clinically used inhibitor. These structures allowed detailed analysis of the molecular features conferring domain selectivity by fosinoprilat. Particularly, altered hydrophobic interactions were observed to be a contributing factor. These experimental data contribute to improved understanding of the structural features that dictate ACE inhibitor domain selectivity, allowing further progress towards designing novel 2nd-generation domain-specific potent ACE inhibitors suitable for clinical administration, with a variety of potential future therapeutic benefits. DATABASE: The atomic coordinates and structure factors for nACE-fosinoprilat and cACE-fosinoprilat structures have been deposited with codes 7Z6Z and 7Z70, respectively, in the RCSB Protein Data Bank, www.pdb.org.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Peptidil Dipeptidase A , Humanos , Peptidil Dipeptidase A/química , Cristalografia por Raios X , Inibidores da Enzima Conversora de Angiotensina/química , Angiotensinas
10.
J Proteome Res ; 10(4): 1881-92, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21214272

RESUMO

Peptide hormones are key messengers in the signaling network between the nervous system, endocrine glands, energy stores and the gastrointestinal tract that regulates feeding and metabolism. Studies on the Drosophila nervous system have uncovered parallels and homologies in homeostatic peptidergic signaling between fruit flies and vertebrates. Yet, the role of enteroendocrine peptides in the regulation of feeding and metabolism has not been explored, with research hampered by the unknown identity of peptides produced by the fly's intestinal tract. We performed a peptidomic LC/MS analysis of the fruit fly midgut containing the enteroendocrine cells. By MS/MS fragmentation, we found 24 peptides from 9 different preprohormones in midgut extracts, including MIP-4 and 2 forms of AST-C. DH(31), CCHamide1 and CCHamide2 are biochemically characterized for the first time. All enteroendocrine peptides represent brain-gut peptides, and apparently are processed by Drosophila prohormone convertase 2 (AMON) as suggested by impaired peptide detectability in amon mutants and localization of amon-driven GFP to enteroendocrine cells. Because of its genetic amenability and peptide diversity, Drosophila provides a good model system to study peptide signaling. The identification of enteroendocrine peptides in the fruit fly provides a platform to address functions of gut peptide hormones in the regulation of feeding and metabolism.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/metabolismo , Hormônios de Inseto/metabolismo , Hormônios Peptídicos/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Animais , Cromatografia Líquida/métodos , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Trato Gastrointestinal/metabolismo , Hormônios de Inseto/química , Hormônios de Inseto/genética , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Hormônios Peptídicos/química , Hormônios Peptídicos/genética
11.
Dev Biol ; 344(2): 992-1000, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20599902

RESUMO

In the one-cell Caenorhabditis elegans embryo, the anterior-posterior (A-P) axis is established when the sperm donated centrosome contacts the posterior cortex. While this contact appears to be essential for axis polarization, little is known about the mechanisms governing centrosome positioning during this process. pam-1 encodes a puromycin sensitive aminopeptidase that regulates centrosome positioning in the early embryo. Previously we showed that pam-1 mutants fail to polarize the A-P axis. Here we show that PAM-1 can be found in mature sperm and in cytoplasm throughout early embryogenesis where it concentrates around mitotic centrosomes and chromosomes. We provide further evidence that PAM-1 acts early in the polarization process by showing that PAR-1 and PAR-6 do not localize appropriately in pam-1 mutants. Additionally, we tested the hypothesis that PAM-1's role in polarity establishment is to ensure centrosome contact with the posterior cortex. We inactivated the microtubule motor dynein, DHC-1, in pam-1 mutants, in an attempt to prevent centrosome movement from the cortex and restore anterior-posterior polarity. When this was done, the aberrant centrosome movements of pam-1 mutants were not observed and anterior-posterior polarity was properly established, with proper localization of cortical and cytoplasmic determinants. We conclude that PAM-1's role in axis polarization is to prevent premature movement of the centrosome from the posterior cortex, ensuring proper axis establishment in the embryo.


Assuntos
Aminopeptidases/metabolismo , Animais , Caenorhabditis elegans/genética , Células , Estruturas Celulares , Centrossomo , Citoplasma , Sacarose Alimentar , Dineínas , Alimentos Formulados , Masculino , Microtúbulos , Espermatozoides
12.
J Exp Biol ; 214(Pt 4): 680-6, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21270318

RESUMO

Drosophila Acer (Angiotensin-converting enzyme-related) encodes a member of the angiotensin-converting enzyme family of metallopeptidases that have important roles in the endocrine regulation of blood homeostasis in mammals. Acer is expressed in the embryonic heart of Drosophila and expression in the adult head appears to be regulated by two clock genes. To study the role of Acer in development and in circadian activity, we have generated Acer null mutants by imprecise excision of a P-element and have compared their development and circadian behaviour with that of wild-type flies with the same genetic background. We show that Acer is not required for normal development, but that night sleep, which is clock regulated, is disrupted in adult flies lacking ACER. Acer null adults have reduced night-time sleep and greater sleep fragmentation, but normal levels of daytime sleep. The quality of night sleep in flies fed inhibitors of ACER is affected in a very similar manner. We have shown, using specific antibodies, that ACER is present in the adult fat body of the head and abdomen, and is secreted into the haemolymph. ACER might therefore have a role in cleaving regulatory peptides involved in metabolism and activity behaviour. There are similarities with mammals, where ACE peptidases are also expressed in adipose tissue and are thought to be part of a signalling system linking metabolism with sleep.


Assuntos
Ritmo Circadiano/genética , Proteínas de Drosophila/deficiência , Drosophila melanogaster/enzimologia , Drosophila melanogaster/fisiologia , Metaloendopeptidases/deficiência , Sono/fisiologia , Animais , Western Blotting , Proteínas de Drosophila/sangue , Proteínas de Drosophila/metabolismo , Corpo Adiposo/enzimologia , Imunofluorescência , Metaloendopeptidases/sangue , Metaloendopeptidases/metabolismo , Microscopia Confocal
13.
J Med Chem ; 64(4): 1763-1785, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33534577

RESUMO

Malaria poses a significant threat to approximately half of the world's population with an annual death toll close to half a million. The emergence of resistance to front-line antimalarials in the most lethal human parasite species, Plasmodium falciparum (Pf), threatens progress made in malaria control. The prospect of losing the efficacy of antimalarial drugs is driving the search for small molecules with new modes of action. Asexual reproduction of the parasite is critically dependent on the recycling of amino acids through catabolism of hemoglobin (Hb), which makes metalloaminopeptidases (MAPs) attractive targets for the development of new drugs. The Pf genome encodes eight MAPs, some of which have been found to be essential for parasite survival. In this article, we discuss the biological structure and function of each MAP within the Pf genome, along with the drug discovery efforts that have been undertaken to identify novel antimalarial candidates of therapeutic value.


Assuntos
Aminopeptidases/antagonistas & inibidores , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Sequência de Aminoácidos , Aminopeptidases/química , Aminopeptidases/fisiologia , Animais , Antimaláricos/química , Domínio Catalítico , Linhagem Celular , Descoberta de Drogas , Humanos , Testes de Sensibilidade Parasitária , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Proteínas de Protozoários/fisiologia
14.
J Proteomics ; 246: 104307, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34174476

RESUMO

Peptides present in the seminal fluid of Drosophila melanogaster can function as antimicrobial agents, enzyme inhibitors and as pheromones that elicit physiological and behavioural responses in the post-mated female. Understanding the molecular interactions by which these peptides influence reproduction requires detailed knowledge of their molecular structures. However, this information is often lacking and cannot be gleaned from just gene sequences and standard proteomic data. We now report the native structures of four seminal fluid peptides (andropin, CG42782, Met75C and Acp54A1) from the ejaculatory duct of male D. melanogaster. The mature CG42782, Met75C and Acp54A1 peptides each have a cyclic structure formed by a disulfide bond, which will reduce conformational freedom and enhance metabolic stability. In addition, the presence of a penultimate Pro in CG42782 and Met75C will help prevent degradation by carboxypeptidases. Met75C has undergone more extensive post-translational modifications with the formation of an N-terminal pyroglutamyl residue and the attachment of a mucin-like O-glycan to the side chain of Thr4. Both of these modifications are expected to further enhance the stability of the secreted peptide. The glycan has a rare zwitterionic structure comprising an O-linked N-acetyl hexosamine, a hexose and, unusually, phosphoethanolamine. A survey of various genomes showed that andropin, CG42782, and Acp54A1 are relatively recent genes and are restricted to the melanogaster subgroup. Met75C, however, was also found in members of the obscura species groups and in Scaptodrosophila lebanonensis. Andropin is related to the cecropin gene family and probably arose by tandem gene duplication, whereas CG42782, Met75C and Acp54A1 possibly emerged de novo. We speculate that the post-translational modifications that we report for these gene products will be important not only for a biological function, but also for metabolic stability and might also facilitate transport across tissue barriers, such as the blood-brain barrier of the female insect. BIOLOGICAL SIGNIFICANCE: Seminal fluid peptides of D. melanogaster function as antimicrobials, enzyme inhibitors and as pheromones, eliciting physiological and behavioural responses in the post-mated female. A fuller understanding of how these peptides influence reproduction requires knowledge not only of their primary structure, but also of their post-translational modification. However, this information is often lacking and difficult to glean from standard proteomic data. The reported modifications, including the unusual glycosylation, adds much to our knowledge of this important class of peptides in this model organism, par excellence.


Assuntos
Drosophila melanogaster , Glicopeptídeos , Animais , Drosophila melanogaster/metabolismo , Ductos Ejaculatórios/metabolismo , Feminino , Glicosilação , Masculino , Peptídeos/metabolismo , Proteômica
15.
Biochem Biophys Res Commun ; 398(3): 532-6, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20599761

RESUMO

Angiotensin-I converting enzyme (ACE, a zinc dependent dipeptidyl carboxypeptidase) is a major target of drugs due to its role in the modulation of blood pressure and cardiovascular disorders. Here we present a crystal structure of AnCE (an ACE homologue from Drosophila melanogaster with a single enzymatic domain) in complex with a natural product-phosphonotripeptide, K-26 at 1.96A resolution. The inhibitor binds exclusively in the S(1) and S(2) binding pockets of AnCE (coordinating the zinc ion) through ionic and hydrogen bond interactions. A detailed structural comparison of AnCE.K-26 complex with individual domains of human somatic ACE provides useful information for further exploration of ACE inhibitor pharmacophores involving phosphonic acids.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Proteínas de Drosophila/química , Metaloendopeptidases/química , Oligopeptídeos/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Cristalografia por Raios X , Proteínas de Drosophila/antagonistas & inibidores , Drosophila melanogaster , Humanos , Metaloendopeptidases/antagonistas & inibidores , Oligopeptídeos/farmacologia , Peptidil Dipeptidase A/química , Estrutura Terciária de Proteína
16.
Proc Biol Sci ; 277(1678): 65-70, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19793753

RESUMO

Quiescence, or a sleep-like state, is a common and important feature of the daily lives of animals from both invertebrate and vertebrate taxa, suggesting that sleep appeared early in animal evolution. Recently, Drosophila melanogaster has been shown to be a relevant and powerful model for the genetic analysis of sleep behaviour. The sleep architecture of D. melanogaster is sexually dimorphic, with females sleeping much less than males during day-time, presumably because reproductive success requires greater foraging activity by the female as well as the search for egg-laying sites. However, this loss of sleep and increase in locomotor activity will heighten the risk for the female from environmental and predator hazards. In this study, we show that virgin females can minimize this risk by behaving like males, with an extended afternoon 'siesta'. Copulation results in the female losing 70 per cent of day-time sleep and becoming more active. This behaviour lasts for at least 8 days after copulation and is abolished if the mating males lack sex peptide (SP), normally present in the seminal fluid. Our results suggest that SP is the molecular switch that promotes wakefulness in the post-mated female, a change of behaviour compatible with increased foraging and egg-laying activity. The stress resulting from SP-dependent sleep deprivation might be an important contribution to the toxic side-effects of male accessory gland products that are known to reduce lifespan in post-mated females.


Assuntos
Copulação/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Atividade Motora/fisiologia , Peptídeos/fisiologia , Sono/fisiologia , Animais , Feminino , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Caracteres Sexuais
17.
Insect Biochem Mol Biol ; 124: 103414, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32589920

RESUMO

In Drosophila melanogaster mating triggers profound changes in the behaviour and reproductive physiology of the female. Many of these post-mating effects are elicited by sex peptide (SP), a 36-mer pheromone made in the male accessory gland and passed to the female in the seminal fluid. The peptide comprises several structurally and functionally distinct domains, one of which consists of five 4-hydroxyprolines and induces a female immune response. The SP gene predicts an isoleucine (Ile14) sandwiched between two of the hydroxyprolines of the mature secreted peptide, but the identity of this residue was not established by peptide sequencing and amino acid analysis, presumably because of modification of the side chain. Here we have used matrix-assisted laser desorption ionisation mass spectrometry together with Fourier-transform ion cyclotron resonance mass spectrometry to show that Ile14 is modified by oxidation of the side chain - a very unusual post-translational modification. Mass spectrometric analysis of glands from different geographical populations of male D. melanogaster show that SP with six hydroxylated side chains is the most common form of the peptide, but that a sub-strain of Canton-S flies held at Leeds only has two or three hydroxylated prolines and an unmodified Ile14. The D. melanogaster genome has remarkably 17 putative hydroxylase genes that are strongly and almost exclusively expressed in the male accessory gland, suggesting that the gland is a powerhouse of protein oxidation. Strain variation in the pattern of sex peptide hydroxylation might be explained by differences in the expression of individual hydroxylase genes.


Assuntos
Proteínas de Drosophila/química , Drosophila melanogaster/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/química , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Genes de Insetos , Variação Genética , Hidroxilação , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Isoleucina/metabolismo , Oxigenases de Função Mista/genética , Atrativos Sexuais/química , Atrativos Sexuais/metabolismo , Comportamento Sexual Animal/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
18.
Peptides ; 30(3): 571-4, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19038301

RESUMO

The neprilysin (M13) family of zinc-metallopeptidases has been implicated in a variety of physiological processes, but principally the control of neuropeptide levels in a range of animal species. The over-expression of the amyloid-degrading enzyme, neprilysin, as a therapeutic strategy for Alzheimer's disease is a concept that is gaining in popularity. Here we utilize the GAL4/UAS system to over-express the Drosophila melanogaster Nep2 gene, a close homologue of neprilysin, in flies yielding an increase in NEP2 protein that is detectable by both immunoblotting and enzyme activity. This increase in NEP2 caused a behavioral phenotype manifested in abnormal climbing behavior. Wild type flies climb in a linear, vertical path, but NEP2 over-expressing (Nep2(OEX)) flies tend to climb in a spiral pattern and display an increase in grooming behavior during frequent stationary periods. Nep2(OEX) flies also perform poorly in a geotaxis maze, taking ten times as long to complete the course compared to wild type Drosophila. We hypothesize that the poor performance of the Nep2(OEX) flies in locomotor assays is due to perturbation of neuropeptide signaling and provides evidence of detrimental effects of neprilysin over-expression.


Assuntos
Comportamento Animal/fisiologia , Locomoção/fisiologia , Neprilisina/biossíntese , Animais , Drosophila melanogaster , Aprendizagem em Labirinto/fisiologia
19.
Peptides ; 30(3): 608-15, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19063927

RESUMO

The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a significant role in a multifunctional array of important physiological processes in insects. PK/PBAN analogs incorporating beta-amino acids were synthesized and evaluated in a pheromonotropic assay in Heliothis peltigera, a melanotropic assay in Spodoptera littoralis, a pupariation assay in Neobellieria bullata, and a hindgut contractile assay in Leucophaea maderae. Two analogs (PK-betaA-1 and PK-betaA-4) demonstrate greatly enhanced resistance to the peptidases neprilysin and angiotensin converting enzyme that are shown to degrade the natural peptides. Despite the changes to the PK core, analog PK-betaA-4 represents a biostable, non-selective agonist in all four bioassays, essentially matching the potency of a natural PK in pupariation assay. Analog PK-betaA-2 is a potent agonist in the melanotropic assay, demonstrating full efficacy at 1pmol. In some cases, the structural changes imparted to the analogs modify the physiological responses. Analog PK-betaA-3 is a non-selective agonist in all four bioassays. The analog PK-betaA-1 shows greater selectivity than parent PK peptides; it is virtually inactive in the pupariation assay and represents a biostable antagonist in the pheromonotropic and melanotropic assays, without the significant agonism of the parent hexapeptide. These analogs provide new, and in some cases, biostable tools to endocrinologists studying similarities and differences in the mechanisms of the variety of PK/PBAN mediated physiological processes. They also may provide leads in the development of PK/PBAN-based, insect-specific pest management agents.


Assuntos
Neuropeptídeos/farmacologia , Animais , Bioensaio , Relação Dose-Resposta a Droga , Melanotrofos/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Neuropeptídeos/agonistas , Neuropeptídeos/antagonistas & inibidores , Feromônios/metabolismo , Spodoptera/efeitos dos fármacos
20.
Gen Comp Endocrinol ; 162(1): 8-17, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19135055

RESUMO

Neuropeptidases play a key role in regulating neuropeptide signalling activity in the central nervous system of animals. They are oligopeptidases that are generally found on the surface of neuronal cells facing the synaptic and peri-synaptic space and therefore are ideally placed for the metabolic inactivation of neuropeptide transmitters/modulators. This review discusses the structure of insect neuropeptides in relation to their susceptibility to hydrolysis by peptidases and the need for specialist enzymes to degrade many neuropeptides. It focuses on five neuropeptidase families (neprilysin, dipeptidyl-peptidase IV, angiotensin-converting enzyme, aminopeptidase and dipeptidyl aminopeptidase III) that have been implicated in the metabolic inactivation of neuropeptides in the central nervous system of insects. Experimental evidence for the involvement of these peptidases in neuropeptide metabolism is reviewed and their properties are compared to similar neuropeptide inactivating peptidases of the mammalian brain. We also discuss how the sequencing of insect genomes has led to the molecular identification of candidate neuropeptidase genes.


Assuntos
Proteínas de Insetos/fisiologia , Neuropeptídeos/metabolismo , Peptídeo Hidrolases/fisiologia , Aminopeptidases/química , Aminopeptidases/metabolismo , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Hidrólise , Proteínas de Insetos/metabolismo , Modelos Moleculares , Neprilisina/química , Neprilisina/metabolismo , Neurônios/metabolismo , Neuropeptídeos/química , Peptídeo Hidrolases/metabolismo , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA