Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 312(3): R347-R357, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052868

RESUMO

Physical exercise can improve brain function, but the effects of exercise cessation are largely unknown. This study examined the time-course profile of hippocampal neurogenesis following exercise cessation. Male C57BL/6 mice were randomly assigned to either a control (Con) or an exercise cessation (ExC) group. Mice in the ExC group were reared in a cage with a running wheel for 8 wk and subsequently placed in a standard cage to cease the exercise. Exercise resulted in a significant increase in the density of doublecortin (DCX)-positive immature neurons in the dentate gyrus (at week 0). Following exercise cessation, the density of DCX-positive neurons gradually decreased and was significantly lower than that in the Con group at 5 and 8 wk after cessation, indicating that exercise cessation leads to a negative rebound in hippocampal neurogenesis. Immunohistochemistry analysis suggests that the negative rebound in neurogenesis is caused by diminished cell survival, not by suppression of cell proliferation and neural maturation. Neither elevated expression of ΔFosB, a transcription factor involved in neurogenesis regulation, nor increased plasma corticosterone, were involved in the negative neurogenesis rebound. Importantly, exercise cessation suppressed ambulatory activity, and a significant correlation between change in activity and DCX-positive neuron density suggested that the decrease in activity is involved in neurogenesis impairment. Forced treadmill running following exercise cessation failed to prevent the negative neurogenesis rebound. This study indicates that cessation of exercise or a decrease in physical activity is associated with an increased risk for impaired hippocampal function, which might increase vulnerability to stress-induced mood disorders.


Assuntos
Retroalimentação Fisiológica/fisiologia , Hipocampo/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Condicionamento Físico Animal/métodos , Esforço Físico/fisiologia , Animais , Proliferação de Células , Sobrevivência Celular , Proteína Duplacortina , Hipocampo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA