Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Toxicol ; 39(2): 165-172, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32066298

RESUMO

Risk assessment of chemical mixtures has emerged as a focus of research efforts, but traditional toxicology testing in mammals is costly, time-consuming, and subject to ethical scrutiny in the context of recent trends to reduce reliance on animal testing. In this review, which is a summary of presentations given at a workshop in Havana, Cuba, in April 2019, we survey the utility of zebra fish as an alternative laboratory model in whole-mixture and component-based testing, as well as in vitro modeling in 3-dimensional organotypic cultures from primary human cells cultured at the air-liquid interface and organ-on-a-chip platforms. Finally, we discuss the complexities of assessing the dynamics and delivery of multispecies liquid aerosol mixtures along the human respiratory tract, with examples of alternative and computational approaches to aerosol dosimetry. The workshop contributed to the professional development of Cuban toxicologists, an underserved segment of the global scientific community, delivering a set of tools and recommendations that could potentially provide cost-effective solutions for scientists with limited research resources.


Assuntos
Alternativas aos Testes com Animais , Interações Medicamentosas , Medição de Risco , Aerossóis , Animais , Cuba , Humanos , Sistema Respiratório/efeitos dos fármacos , Produtos do Tabaco/toxicidade
2.
Arch Toxicol ; 93(11): 3229-3247, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31494692

RESUMO

We previously proposed a systems toxicology framework for in vitro assessment of e-liquids. The framework starts with the first layer aimed at screening the potential toxicity of e-liquids, followed by the second layer aimed at investigating the toxicity-related mechanism of e-liquids, and finally, the third layer aimed at evaluating the toxicity-related mechanism of the corresponding aerosols. In this work, we applied this framework to assess the impact of the e-liquid MESH Classic Tobacco and its aerosol compared with that of cigarette smoke (CS) from the 3R4F reference cigarette. In the first layer, we evaluated the cytotoxicity profile of the MESH Classic Tobacco e-liquid (containing humectants, nicotine, and flavors) and its Base e-liquid (containing humectant and nicotine only) in comparison with total particulate matter (TPM) of 3R4F CS using primary bronchial epithelial cell cultures. In the second layer, the same culture model was used to explore changes in specific markers using high-content screening assays to identify potential toxicity-related mechanisms induced by the MESH Classic Tobacco and Base e-liquids beyond cell viability in comparison with the 3R4F CS TPM-induced effects. Finally, in the third layer, we compared the impact of exposure to the MESH Classic Tobacco or Base aerosols with 3R4F CS using human organotypic air-liquid interface buccal and small airway epithelial cultures. The results showed that the cytotoxicity of the MESH Classic Tobacco liquid was similar to the Base liquid but lower than 3R4F CS TPM at comparable nicotine concentrations. Relative to 3R4F CS exposure, MESH Classic Tobacco aerosol exposure did not cause tissue damage and elicited lower changes in the mRNA, microRNA, and protein markers. In the context of tobacco harm reduction strategy, the framework is suitable to assess the potential-reduced impact of electronic cigarette aerosol relative to CS.


Assuntos
Aerossóis/toxicidade , Brônquios/efeitos dos fármacos , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Produtos do Tabaco/toxicidade , Adenilato Quinase/metabolismo , Brônquios/metabolismo , Brônquios/patologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Proteoma/metabolismo , Testes de Toxicidade , Transcriptoma/efeitos dos fármacos
3.
Bioinformatics ; 31(4): 484-91, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25294919

RESUMO

MOTIVATION: Animal models are important tools in drug discovery and for understanding human biology in general. However, many drugs that initially show promising results in rodents fail in later stages of clinical trials. Understanding the commonalities and differences between human and rat cell signaling networks can lead to better experimental designs, improved allocation of resources and ultimately better drugs. RESULTS: The sbv IMPROVER Species-Specific Network Inference challenge was designed to use the power of the crowds to build two species-specific cell signaling networks given phosphoproteomics, transcriptomics and cytokine data generated from NHBE and NRBE cells exposed to various stimuli. A common literature-inspired reference network with 220 nodes and 501 edges was also provided as prior knowledge from which challenge participants could add or remove edges but not nodes. Such a large network inference challenge not based on synthetic simulations but on real data presented unique difficulties in scoring and interpreting the results. Because any prior knowledge about the networks was already provided to the participants for reference, novel ways for scoring and aggregating the results were developed. Two human and rat consensus networks were obtained by combining all the inferred networks. Further analysis showed that major signaling pathways were conserved between the two species with only isolated components diverging, as in the case of ribosomal S6 kinase RPS6KA1. Overall, the consensus between inferred edges was relatively high with the exception of the downstream targets of transcription factors, which seemed more difficult to predict. CONTACT: ebilal@us.ibm.com or gustavo@us.ibm.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Crowdsourcing , Citocinas/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Fosfoproteínas/metabolismo , Software , Biologia de Sistemas/métodos , Animais , Brônquios/citologia , Brônquios/metabolismo , Comunicação Celular , Células Cultivadas , Bases de Dados Factuais , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Modelos Animais , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Ratos , Transdução de Sinais , Especificidade da Espécie
4.
Chem Res Toxicol ; 29(8): 1252-69, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27404394

RESUMO

Cigarette smoke (CS) has been reported to increase predisposition to oral cancer and is also recognized as a risk factor for many conditions including periodontal diseases, gingivitis, and other benign mucosal disorders. Smoking cessation remains the most effective approach for minimizing the risk of smoking-related diseases. However, reduction of harmful constituents by heating rather than combusting tobacco, without modifying the amount of nicotine, is a promising new paradigm in harm reduction. In this study, we compared effects of exposure to aerosol derived from a candidate modified risk tobacco product, the tobacco heating system (THS) 2.2, with those of CS generated from the 3R4F reference cigarette. Human organotypic oral epithelial tissue cultures (EpiOral, MatTek Corporation) were exposed for 28 min to 3R4F CS or THS2.2 aerosol, both diluted with air to comparable nicotine concentrations (0.32 or 0.51 mg nicotine/L aerosol/CS for 3R4F and 0.31 or 0.46 mg/L for THS2.2). We also tested one higher concentration (1.09 mg/L) of THS2.2. A systems toxicology approach was employed combining cellular assays (i.e., cytotoxicity and cytochrome P450 activity assays), comprehensive molecular investigations of the buccal epithelial transcriptome (mRNA and miRNA) by means of computational network biology, measurements of secreted proinflammatory markers, and histopathological analysis. We observed that the impact of 3R4F CS was greater than THS2.2 aerosol in terms of cytotoxicity, morphological tissue alterations, and secretion of inflammatory mediators. Analysis of the transcriptomic changes in the exposed oral cultures revealed significant perturbations in various network models such as apoptosis, necroptosis, senescence, xenobiotic metabolism, oxidative stress, and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) signaling. The stress responses following THS2.2 aerosol exposure were markedly decreased, and the exposed cultures recovered more completely compared with those exposed to 3R4F CS.


Assuntos
Mucosa Bucal/efeitos dos fármacos , Nicotiana , Toxicologia , Exposição Ambiental , Humanos , MicroRNAs/metabolismo , Mucosa Bucal/citologia , Mucosa Bucal/metabolismo
5.
Toxicol Mech Methods ; 26(6): 389-413, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27117495

RESUMO

Various electronic nicotine delivery systems (ENDS), of which electronic cigarettes (e-cigs) are the most recognized prototype, have been quickly gaining ground on conventional cigarettes because they are perceived as less harmful. Research assessing the potential effects of ENDS exposure in humans is currently limited and inconclusive. New products are emerging with numerous variations in designs and performance parameters within and across brands. Acknowledging these challenges, we present here a proposed framework for an in vitro systems toxicology assessment of e-liquids and their aerosols, intended to complement the battery of assays for standard toxicity assessments. The proposed framework utilizes high-throughput toxicity assessments of e-liquids and their aerosols, in which the device-to-device variability is minimized, and a systems-level investigation of the cellular mechanisms of toxicity is an integral part. An analytical chemistry investigation is also included as a part of the framework to provide accurate and reliable chemistry data solidifying the toxicological assessment. In its simplest form, the framework comprises of three main layers: (1) high-throughput toxicity screening of e-liquids using primary human cell culture systems; (2) toxicity-related mechanistic assessment of selected e-liquids, and (3) toxicity-related mechanistic assessment of their aerosols using organotypic air-liquid interface airway culture systems. A systems toxicology assessment approach is leveraged to enable in-depth analyses of the toxicity-related cellular mechanisms of e-liquids and their aerosols. We present example use cases to demonstrate the suitability of the framework for a robust in vitro assessment of e-liquids and their aerosols.


Assuntos
Poluentes Atmosféricos/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Testes de Toxicidade/instrumentação , Testes de Toxicidade/métodos , Aerossóis , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Desenho de Equipamento , Ensaios de Triagem em Larga Escala , Humanos , Biologia de Sistemas , Volatilização
6.
Inflamm Res ; 64(7): 471-86, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25962837

RESUMO

BACKGROUND: Mouse models are useful for studying cigarette smoke (CS)-induced chronic pulmonary pathologies such as lung emphysema. To enhance translation of large-scale omics data from mechanistic studies into pathophysiological changes, we have developed computational tools based on reverse causal reasoning (RCR). OBJECTIVE: In the present study we applied a systems biology approach leveraging RCR to identify molecular mechanistic explanations of pathophysiological changes associated with CS-induced lung emphysema in susceptible mice. METHODS: The lung transcriptomes of five mouse models (C57BL/6, ApoE (-/-) , A/J, CD1, and Nrf2 (-/-) ) were analyzed following 5-7 months of CS exposure. RESULTS: We predicted 39 molecular changes mostly related to inflammatory processes including known key emphysema drivers such as NF-κB and TLR4 signaling, and increased levels of TNF-α, CSF2, and several interleukins. More importantly, RCR predicted potential molecular mechanisms that are less well-established, including increased transcriptional activity of PU.1, STAT1, C/EBP, FOXM1, YY1, and N-COR, and reduced protein abundance of ITGB6 and CFTR. We corroborated several predictions using targeted proteomic approaches, demonstrating increased abundance of CSF2, C/EBPα, C/EBPß, PU.1, BRCA1, and STAT1. CONCLUSION: These systems biology-derived candidate mechanisms common to susceptible mouse models may enhance understanding of CS-induced molecular processes underlying emphysema development in mice and their relevancy for human chronic obstructive pulmonary disease.


Assuntos
Nicotiana , Enfisema Pulmonar/genética , Enfisema Pulmonar/patologia , Fumaça , Animais , Apolipoproteínas E/genética , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Causalidade , Perfilação da Expressão Gênica , Exposição por Inalação , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CFTR , Camundongos Knockout , Reação em Cadeia da Polimerase , Proteômica , Enfisema Pulmonar/induzido quimicamente , Fumar , Especificidade da Espécie
7.
Inhal Toxicol ; 27(9): 405-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26295358

RESUMO

Toxicity of nebulized nicotine (Nic) and nicotine/pyruvic acid mixtures (Nic/Pyr) was characterized in a 28-day Organization for Economic Co-operation and Development 412 inhalation study with additional transcriptomic and lipidomic analyses. Sprague-Dawley rats were nose-only exposed, 6 h/day, 5 days/week to filtered air, saline, nicotine (50 µg/l), sodium pyruvate (NaPyr, 33.9 µg/l) or equimolar Nic/Pyr mixtures (18, 25 and 50 µg nicotine/l). Saline and NaPyr caused no health effects, but rats exposed to nicotine-containing aerosols had decreased body weight gains and concentration-dependent increases in liver weight. Blood neutrophil counts were increased and lymphocyte counts decreased in rats exposed to nicotine; activities of alkaline phosphatase and alanine aminotransferase were increased, and levels of cholesterol and glucose decreased. The only histopathologic finding in non-respiratory tract organs was increased liver vacuolation and glycogen content. Respiratory tract findings upon nicotine exposure (but also some phosphate-buffered saline aerosol effects) were observed only in the larynx and were limited to adaptive changes. Gene expression changes in the lung and liver were very weak. Nic and Nic/Pyr caused few significant changes (including Cyp1a1 gene upregulation). Changes were predominantly related to energy metabolism and fatty acid metabolism but did not indicate an obvious toxicity-related response. Nicotine exposure lowered plasma lipids, including cholesteryl ester (CE) and free cholesterol and, in the liver, phospholipids and sphingolipids. Nic, NaPyr and Nic/Pyr decreased hepatic triacylglycerol and CE. In the lung, Nic and Nic/Pyr increased CE levels. These data suggest that only minor biologic effects related to inhalation of Nic or Nic/Pyr aerosols were observed in this 28-day study.


Assuntos
Antioxidantes/toxicidade , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Ácido Pirúvico/toxicidade , Dispositivos para o Abandono do Uso de Tabaco/efeitos adversos , Administração por Inalação , Aerossóis , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Tamanho do Órgão/efeitos dos fármacos , Distribuição Aleatória , Ratos Sprague-Dawley , Organismos Livres de Patógenos Específicos , Testes de Toxicidade Subcrônica , Aumento de Peso/efeitos dos fármacos
8.
Toxicol Mech Methods ; 24(7): 470-87, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25046638

RESUMO

Smoking has been associated with diseases of the lung, pulmonary airways and oral cavity. Cytologic, genomic and transcriptomic changes in oral mucosa correlate with oral pre-neoplasia, cancer and inflammation (e.g. periodontitis). Alteration of smoking-related gene expression changes in oral epithelial cells is similar to that in bronchial and nasal epithelial cells. Using a systems toxicology approach, we have previously assessed the impact of cigarette smoke (CS) seen as perturbations of biological processes in human nasal and bronchial organotypic epithelial culture models. Here, we report our further assessment using in vitro human oral organotypic epithelium models. We exposed the buccal and gingival organotypic epithelial tissue cultures to CS at the air-liquid interface. CS exposure was associated with increased secretion of inflammatory mediators, induction of cytochrome P450s activity and overall weak toxicity in both tissues. Using microarray technology, gene-set analysis and a novel computational modeling approach leveraging causal biological network models, we identified CS impact on xenobiotic metabolism-related pathways accompanied by a more subtle alteration in inflammatory processes. Gene-set analysis further indicated that the CS-induced pathways in the in vitro buccal tissue models resembled those in the in vivo buccal biopsies of smokers from a published dataset. These findings support the translatability of systems responses from in vitro to in vivo and demonstrate the applicability of oral organotypical tissue models for an impact assessment of CS on various tissues exposed during smoking, as well as for impact assessment of reduced-risk products.


Assuntos
Mucosa Bucal/efeitos dos fármacos , Fumaça , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Humanos , Técnicas In Vitro , Mucosa Bucal/metabolismo , Nicotiana , Transcriptoma
9.
Toxicol Lett ; 393: 107-113, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350531

RESUMO

In the absence of epidemiological data, there is a need to develop computational models that convert in vitro findings to human disease risk predictions following toxicant exposure. In such efforts, in vitro data can be evaluated in the context of adverse outcome pathways (AOPs) that organize mechanistic knowledge based on empirical evidence into a sequence of molecular-, cellular-, tissue-, and organ-level key events that precede an adverse outcome (AO). Here we combined data from advanced in vitro organotypic airway models exposed to combustible cigarette (CC) smoke or Tobacco Heating System (THS) aerosol with an AOP for increased oxidative stress leads to decreased lung function. The mathematical modeling predicted reduced risk of decreased ciliary beating frequency (CBF) based on oxidative stress measurements and reduced risk of decreased mucociliary clearance (MCC) based on CBF measurements in THS aerosol- compared with CC smoke-exposed cultures. To extend the predictions to the AO of decreased lung function, we leveraged human MCC data from current smokers, nonsmokers, former smokers, and users of heated tobacco products. This approach provided a plausible prediction of diminished reduction in lung function in response to THS use compared with continued smoking. The current approach may also present a basis for an integrated approach to testing and assessment of tobacco products for future regulatory decision-making.


Assuntos
Rotas de Resultados Adversos , Produtos do Tabaco , Humanos , Produtos do Tabaco/toxicidade , Fumaça/efeitos adversos , Medição de Risco , Pulmão/metabolismo , Aerossóis
10.
Food Chem Toxicol ; 175: 113708, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36889430

RESUMO

Homemade e-liquids and power-adjustable vaping devices may carry higher risks than commercial formulations and fixed-power devices. This study used human macrophage-like and bronchial epithelial (NHBE) cell cultures to investigate toxicity of homemade e-liquids containing propylene glycol and vegetable glycerin (PG/VG), nicotine, vitamin E acetate (VEA), medium-chain fatty acids (MCFAs), phytol, and cannabidiol (CBD). SmallAir™ organotypic epithelial cultures were exposed to aerosols generated at different power settings (10-50 W). Carbonyl levels were measured, and endpoints reflecting epithelial function (ciliary beating frequency [CBF]), integrity (transepithelial electrical resistance [TEER]), and structure (histology) were investigated. Treatment with nicotine or VEA alone or with PG/VG did not impact cell viability. CBD, phytol, and lauric acid caused cytotoxicity in both culture systems and increased lipid-laden macrophages. Exposure of SmallAir™ organotypic cultures to CBD-containing aerosols resulted in tissue injury and loss of CBF and TEER, while PG/VG alone or with nicotine or VEA did not. Aerosols generated with higher power settings had higher carbonyl concentrations. In conclusion, the presence and concentration of certain chemicals and device power may induce cytotoxicity in vitro. These results raise concerns that power-adjustable devices may generate toxic compounds and suggest that toxicity assessments should be conducted for both e-liquid formulations and their aerosols.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Humanos , Nicotina/toxicidade , Nicotina/química , Brônquios , Verduras , Aerossóis/toxicidade , Glicerol/química , Propilenoglicol/química
11.
Toxicol In Vitro ; 79: 105277, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34843886

RESUMO

Assessment of aerosols effects on liver CYP function generally involves aqueous fractions (AF). Although easy and efficient, this method has not been optimized recently or comparatively assessed against other aerosol exposure methods. Here, we comparatively evaluated the effects of the AFs of cigarette smoke (CS) and Tobacco Heating System (THS) aerosols on CYP activity in liver spheroids. We then used these data to develop a physiological aerosol exposure system combining a multi-organs-on-a-chip, 3D lung tissues, liver spheroids, and a direct aerosol exposure system. Liver spheroids incubated with CS AF showed a dose-dependent increase in CYP1A1/1B1, CYP1A2, and CYP2B6 activity and a dose-dependent decrease in CYP2C9, CYP2D6, and CYP3A4 activity relative to untreated tissues. In our physiological exposure system, repeated CS exposure of the bronchial tissues also caused CYP1A1/1B1 and CYP1A2 induction in the bronchial tissues and liver spheroids; but the spheroids showed an increase in CYP3A4 activity and no effect on CYP2C9 or CYP2D6 activity relative to air-exposed tissues, which resembles the results reported in smokers. THS aerosol did not affect CYP activity in bronchial or liver tissues, even at 4 times higher concentrations than CS. In conclusion, our system allows us to physiologically test the effects of CS or other aerosols on lung and liver tissues cultured in the same chip circuit, thus delivering more in vivo like data.


Assuntos
Aerossóis/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Células Cultivadas , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Humanos , Fígado/enzimologia , Fígado/metabolismo , Fumaça/efeitos adversos , Esferoides Celulares/efeitos dos fármacos , Análise Serial de Tecidos/métodos , Produtos do Tabaco/efeitos adversos , Testes de Toxicidade/métodos
12.
Toxicol Lett ; 337: 98-110, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220401

RESUMO

Exposure to aerosol from electronic vapor (e-vapor) products has been suggested to result in less risk of harm to smokers than cigarette smoke (CS) exposure. Although many studies on e-vapor products have tested the effects of liquid formulations on cell cultures, few have evaluated the effects of aerosolized formulations. We examined the effects of acute exposure to the aerosol of an e-vapor device that uses the MESH® technology (IQOS® MESH, Philip Morris International) and to CS from the 3R4F reference cigarette on human organotypic bronchial epithelial culture and alveolar triculture models. In contrast to 3R4F CS exposure, exposure to the IQOS MESH aerosol (Classic Tobacco flavor) did not cause cytotoxicity in bronchial epithelial cultures or alveolar tricultures despite its greater concentrations of deposited nicotine (3- and 4-fold, respectively). CS exposure caused a marked decrease in the frequency and active area of ciliary beating in bronchial cultures, whereas IQOS MESH aerosol exposure did not. Global mRNA expression and secreted protein profiles revealed a significantly lower impact of IQOS MESH aerosol exposure than 3R4F CS exposure. Overall, our whole aerosol exposure study shows a clearly reduced impact of IQOS MESH aerosol relative to CS in bronchial and alveolar cultures, even at greater nicotine doses.


Assuntos
Brônquios/efeitos dos fármacos , Sistemas Eletrônicos de Liberação de Nicotina , Alvéolos Pulmonares/efeitos dos fármacos , Fumaça/efeitos adversos , Adenilato Quinase/metabolismo , Adulto , Aerossóis , Sobrevivência Celular/efeitos dos fármacos , Cílios/efeitos dos fármacos , Humanos , Masculino , Nicotina/química , Técnicas de Cultura de Órgãos , RNA Mensageiro/biossíntese , Nicotiana , Transcrição Gênica/efeitos dos fármacos
13.
Food Chem Toxicol ; 157: 112577, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34563633

RESUMO

Trehalose is added in drug formulations to act as fillers or improve aerosolization performance. Its characteristics as a carrier molecule have been explored; however, the fate of trehalose in human airway tissues has not been thoroughly investigated. Here, we investigated the fate of nebulized trehalose using in vitro human air-liquid bronchial epithelial cultures. First, a tracing experiment was conducted using 13C12-trehalose; we measured trehalose distribution in different culture compartments (apical surface liquid, epithelial culture, and basal side medium) at various time points following acute exposure to 13C12-labeled trehalose. We found that 13C12-trehalose was metabolized into 13C6-glucose. The data was then used to model the kinetics of trehalose disappearance from the apical surface of bronchial cultures. Secondly, we evaluated the potential adverse effects of nebulized trehalose on the bronchial cultures after they were acutely exposed to nebulized trehalose up to a level just below its solubility limit (50 g/100 g water). We assessed the ciliary beating frequency and histological characteristics. We found that nebulized trehalose did not lead to marked alteration in ciliary beating frequency and morphology of the epithelial cultures. The in vitro testing approach used here may enable the early selection of excipients for future development of inhalation products.


Assuntos
Brônquios/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Trealose/farmacologia , Aerossóis/administração & dosagem , Aerossóis/farmacocinética , Aerossóis/farmacologia , Brônquios/metabolismo , Células Cultivadas , Humanos , Nebulizadores e Vaporizadores , Mucosa Respiratória/metabolismo , Trealose/administração & dosagem , Trealose/farmacocinética
14.
Toxicol Rep ; 7: 1282-1295, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014713

RESUMO

The expression of some microRNAs (miRNA) is modulated in response to cigarette smoke (CS), which is a leading cause of major preventable diseases. However, whether miRNA expression is also modulated by the aerosol/extract from potentially reduced-risk products is not well studied. The present work is a meta-analysis of 12 in vitro studies in human organotypic epithelial cultures of the aerodigestive tract (buccal, gingival, bronchial, nasal, and small airway epithelia). These studies compared the effects of exposure to aerosols from electronic vapor (e-vapor) products and heated tobacco products, and to extracts from Swedish snus products (in the present work, will be referred to as reduced-risk products [RRPs]) on miRNA expression with the effects of exposure to CS or its total particulate matter fraction. This meta-analysis evaluated 12 datasets of a total of 736 detected miRNAs and 2775 exposed culture inserts. The t-distributed stochastic neighbor embedding method was used to find similarities across the diversity of miRNA responses characterized by tissue type, exposure type, and product concentration. The CS-induced changes in miRNA expression in gingival cultures were close to those in buccal cultures; similarly, the alterations in miRNA expression in small airway, bronchial, and nasal tissues resembled each other. A supervised clustering was performed to identify miRNAs exhibiting particular response patterns. The analysis identified a set of miRNAs whose expression was altered in specific tissues upon exposure to CS (e.g., miR-125b-5p, miR-132-3p, miR-99a-5p, and 146a-5p). Finally, we investigated the impact of RRPs on miRNA expression in relation to that of CS by calculating the response ratio r between the RRP- and CS-induced alterations at an individual miRNA level, showing reduced alterations in miRNA expression following RRP exposure relative to CS exposure (94 % relative reduction). No specific miRNA response pattern indicating exposure to aerosols from heated tobacco products and e-vapor products, or extracts from Swedish snus was identifiable.

15.
Curr Res Toxicol ; 1: 56-69, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34345837

RESUMO

In vitro models of the human lung play an essential role in evaluating the toxicity of inhaled compounds and understanding the development of respiratory diseases. Three-dimensional (3D) organotypic models derived from lung basal epithelial cells and grown at the air-liquid interface resemble human airway epithelium in multiple aspects, including morphology, cell composition, transcriptional profile, and xenobiotic metabolism. Whether the different characteristics of basal cell donors have an impact on model characteristics and responses remains unknown. In addition, studies are often conducted with 3D cultures from one donor, assuming a representative response on the population level. Whether this assumption is correct requires further investigation. In this study, we compared the morphology and functionality of 3D organotypic bronchial and small airway cultures from different donors at different weeks after air-lift to assess the interdonor variability in these parameters. The thickness, cell type composition, and transepithelial electrical resistance varied among the donors and over time after air-lift. Cilia beating frequency increased in response to isoproterenol treatment in both culture types, independent of the donor. The cultures presented low basal cytochrome P450 (CYP) 1A1/1B1 activity, but 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treatment induced CYP1A1/1B1 activity regardless of the donor. In conclusion, lung epithelial cultures prepared from different donors present diverse morphology but similar functionality and metabolic activity, with certain variability in their response to stimulation.

16.
Toxicol Rep ; 7: 1187-1206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32995294

RESUMO

Cigarette smoking causes major preventable diseases, morbidity, and mortality worldwide. Smoking cessation and prevention of smoking initiation are the preferred means for reducing these risks. Less harmful tobacco products, termed modified-risk tobacco products (MRTP), are being developed as a potential alternative for current adult smokers who would otherwise continue smoking. According to a regulatory framework issued by the US Food and Drug Administration, a manufacturer must provide comprehensive scientific evidence that the product significantly reduces harm and the risk of tobacco-related diseases, in order to obtain marketing authorization for a new MRTP. For new tobacco products similar to an already approved predicate product, the FDA has foreseen a simplified procedure for assessing "substantial equivalence". In this article, we present a use case that bridges the nonclinical evidence from previous studies demonstrating the relatively reduced harm potential of two heat-not-burn products based on different tobacco heating principles. The nonclinical evidence was collected along a "causal chain of events leading to disease" (CELSD) to systematically follow the consequences of reduced exposure to toxicants (relative to cigarette smoke) through increasing levels of biological complexity up to disease manifestation in animal models of human disease. This approach leverages the principles of systems biology and toxicology as a basis for further extrapolation to human studies. The experimental results demonstrate a similarly reduced impact of both products on apical and molecular endpoints, no novel effects not seen with cigarette smoke exposure, and an effect of switching from cigarettes to either MRTP that is comparable to that of complete smoking cessation. Ideally, a subset of representative assays from the presented sequence along the CELSD could be sufficient for predicting similarity or substantial equivalence in the nonclinical impact of novel products; this would require further validation, for which the present use case could serve as a starting point.

17.
ALTEX ; 37(3): 365-394, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32113184

RESUMO

The first microfluidic microphysiological systems (MPS) entered the academic scene more than 15 years ago and were considered an enabling technology to human (patho)biology in vitro and, therefore, provide alternative approaches to laboratory animals in pharmaceutical drug development and academic research. Nowadays, the field generates more than a thousand scientific publications per year. Despite the MPS hype in academia and by platform providers, which says this technology is about to reshape the entire in vitro culture landscape in basic and applied research, MPS approaches have neither been widely adopted by the pharmaceutical industry yet nor reached regulated drug authorization processes at all. Here, 46 leading experts from all stakeholders - academia, MPS supplier industry, pharmaceutical and consumer products industries, and leading regulatory agencies - worldwide have analyzed existing challenges and hurdles along the MPS-based assay life cycle in a second workshop of this kind in June 2019. They identified that the level of qualification of MPS-based assays for a given context of use and a communication gap between stakeholders are the major challenges for industrial adoption by end-users. Finally, a regulatory acceptance dilemma exists against that background. This t4 report elaborates on these findings in detail and summarizes solutions how to overcome the roadblocks. It provides recommendations and a roadmap towards regulatory accepted MPS-based models and assays for patients' benefit and further laboratory animal reduction in drug development. Finally, experts highlighted the potential of MPS-based human disease models to feedback into laboratory animal replacement in basic life science research.


Assuntos
Alternativas aos Testes com Animais , Bem-Estar do Animal , Desenvolvimento de Medicamentos , Avaliação Pré-Clínica de Medicamentos/métodos , Dispositivos Lab-On-A-Chip , Animais , Indústria Farmacêutica , Humanos , Modelos Biológicos
18.
Food Chem Toxicol ; 125: 252-270, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30610935

RESUMO

Swedish snus is a smokeless tobacco product that contains reduced levels of harmful compounds compared with cigarette smoke. In Sweden, where snus use exceeds smoking among men, relatively low rates of major smoking-related diseases have been recorded. To better understand how snus use could align with current tobacco harm reduction strategies, its potential mechanisms of toxicity must be investigated. This study aimed to determine, via a systems toxicology approach, the biological impact of repeated 72-hour exposure of human gingival epithelial organotypic cultures to extracts from both a commercial and a reference snus and the total particulate matter (TPM) from cigarette smoke. At concentrations relevant for human use, cultures treated with snus extracts induced mild, generally reversible biological changes, while TPM treatment induced substantial morphological and inflammatory alterations. Network enrichment analysis and integrative analysis of the global mRNA and miRNA expression profiles indicated a limited and mostly transient impact of the snus extracts, in particular on xenobiotic metabolism, while the effects of TPM were marked and sustained over time. High-confidence miRNAs that might be related to pathological conditions in vivo were identified. This study highlights the limited biological impact of Swedish snus extract on human organotypic gingival cultures.


Assuntos
Gengiva/efeitos dos fármacos , Material Particulado/análise , Extratos Vegetais/efeitos adversos , Tabaco sem Fumaça/efeitos adversos , Células Cultivadas , Gengiva/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Nicotina/análise , Extratos Vegetais/análise , Extratos Vegetais/química , Suécia , Fatores de Tempo , Tabaco sem Fumaça/análise , Transcriptoma/efeitos dos fármacos
19.
Intern Emerg Med ; 14(6): 863-883, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30835057

RESUMO

In the context of tobacco harm-reduction strategy, the potential reduced impact of electronic cigarette (EC) exposure should be evaluated relative to the impact of cigarette smoke exposure. We conducted a series of in vitro studies to compare the biological impact of an acute exposure to aerosols of "test mix" (flavors, nicotine, and humectants), "base" (nicotine and humectants), and "carrier" (humectants) formulations using MarkTen® EC devices with the impact of exposure to smoke of 3R4F reference cigarettes, at a matching puff number, using human organotypic air-liquid interface buccal and small airway cultures. We measured the concentrations of nicotine and carbonyls deposited in the exposure chamber after each exposure experiment. The deposited carbonyl concentrations were used as representative measures to assess the reduced exposure to potentially toxic volatile substances. We followed a systems toxicology approach whereby functional biological endpoints, such as histopathology and ciliary beating frequency, were complemented by multiplex and omics assays to measure secreted inflammatory proteins and whole-genome transcriptomes, respectively. Among the endpoints analyzed, the only parameters that showed a significant response to EC exposure were secretion of proteins and whole-genome transcriptomes. Based on the multiplex and omics analyzes, the cellular responses to EC aerosol exposure were tissue type-specific; however, those alterations were much smaller than those following cigarette smoke exposure, even when the EC aerosol exposure under the testing conditions resulted in a deposited nicotine concentration approximately 200 times that in saliva of EC users.


Assuntos
Fumar Cigarros/metabolismo , Vapor do Cigarro Eletrônico/metabolismo , Exposição Ambiental/análise , Vapor do Cigarro Eletrônico/análise , Vapor do Cigarro Eletrônico/toxicidade , Humanos , Mucosa Bucal/metabolismo , Mucosa Bucal/fisiopatologia
20.
Lab Chip ; 18(24): 3814-3829, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30460365

RESUMO

The merging of three-dimensional in vitro models with multi-organ-on-a-chip (MOC) technology has taken in vitro assessment of chemicals to an unprecedented level. By connecting multiple organotypic models, MOC allows for the crosstalk between different organs to be studied to evaluate a compound's safety and efficacy better than with single cultures. The technology could also improve the toxicological assessment of aerosols that have been implicated in the development of chronic obstructive pulmonary disease, asthma, or lung cancer. Here we report the development of a lung/liver-on-a-chip, connecting in a single circuit, normal human bronchial epithelial (NHBE) cells cultured at the air-liquid interface (ALI), and HepaRG™ liver spheroids. Maintenance of the individual tissues in the chip increased NHBE ALI tissue transepithelial electrical resistance and decreased HepaRG™ spheroid adenosine triphosphate content as well as cytochrome P450 (CYP) 1A1/1B1 inducibility. CYP inducibility was partly restored when HepaRG™ spheroids were cocultured with NHBE ALI tissues. Both tissues remained viable and functional for 28 days when cocultured in the chip. The capacity of the HepaRG™ spheroids to metabolize compounds present in the medium and to modulate their toxicity was proven using aflatoxin B1 (AFB1). AFB1 toxicity in NHBE ALI tissues decreased when HepaRG™ spheroids were present in the same chip circuit, proving that the HepaRG™-mediated detoxification is protecting/decreasing from AFB1-mediated cytotoxicity. The lung/liver-on-a-chip platform presented here offers new opportunities to study the toxicity of inhaled aerosols or to demonstrate the safety and efficacy of new drug candidates targeting the human lung.


Assuntos
Fígado/citologia , Pulmão/citologia , Modelos Biológicos , Análise Serial de Tecidos , Testes de Toxicidade , Aflatoxina B1/toxicidade , Células Cultivadas , Técnicas de Cocultura/instrumentação , Desenho de Equipamento , Humanos , Exposição por Inalação/análise , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Análise Serial de Tecidos/instrumentação , Análise Serial de Tecidos/métodos , Testes de Toxicidade/instrumentação , Testes de Toxicidade/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA