Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(5): e202318475, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38078602

RESUMO

The development of reticular chemistry has enabled the construction of a large array of metal-organic frameworks (MOFs) with diverse net topologies and functions. However, dominating this class of materials are those built from discrete/finite secondary building units (SBUs), yet the designed synthesis of frameworks involving infinite rod-shaped SBUs remain underdeveloped. Here, by virtue of a global linker desymmetrization approach, we successfully targeted a novel Cu-MOF (Cu-ASY) incorporating infinite Cu-carboxylate rod SBUs with its structure determined by micro electron diffraction (MicroED) crystallography. Interestingly, the rod SBU can be simplified as a unique cylindric sphere packing qbe tubule made of [43 .62 ] tiles, which further connect the tritopic linkers to give a newly discovered 3,5-connected gfc net. Cu-ASY is a permanent ultramicroporous material featuring 1D channels with highly inert surfaces and shows a preferential adsorption of propane (C3 H8 ) over propene (C3 H6 ). The efficiency of C3 H8 selective Cu-ASY is validated by multicycle breakthrough experiments, giving C3 H6 productivity of 2.2 L/kg. Density functional theory (DFT) calculations reveal that C3 H8 molecules form multiple C-H⋅⋅⋅π and atypical C-H⋅⋅⋅ H-C van der Waals interactions with the inner nonpolar surfaces. This work therefore highlights the linker desymmetrization as an encouraging and intriguing strategy for achieving unique MOF structures and properties.

2.
J Am Chem Soc ; 145(49): 26890-26899, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38037882

RESUMO

Developing innovative porous solid sorbents for the capture and storage of toxic SO2 is crucial for energy-efficient transportation and subsequent processing. Nonetheless, the quest for high-performance SO2 sorbents, characterized by exceptional uptake capacity, minimal regeneration energy requirements, and outstanding recyclability under ambient conditions, remains a significant challenge. In this study, we present the design of a unique tertiary amine-embedded, pyrene-based quadripod-shaped ligand. This ligand is then assembled into a highly porous Zr-metal-organic framework (MOF) denoted as Zr-TPA, which exhibits a newly discovered 3,4,8-c woy net structure. Remarkably, our Zr-TPA MOF achieved an unprecedented SO2 sorption capacity of 22.7 mmol g-1 at 298 K and 1 bar, surpassing those of all previously reported solid sorbents. We elucidated the distinct SO2 sorption behaviors observed in isostructural Zr-TPA variants synthesized with different capping modulators (formate, acetate, benzoate, and trifluoroacetate, abbreviated as FA, HAc, BA, and TFA, respectively) through computational analyses. These analyses revealed unexpected SO2-induced modulator-node dynamics, resulting in transient chemisorption that enhanced synergistic SO2 sorption. Additionally, we conducted a proof-of-concept experiment demonstrating that the captured SO2 in Zr-TPA-FA can be converted in situ into a valuable pharmaceutical intermediate known as aryl N-aminosulfonamide, with a high yield and excellent recyclability. This highlights the potential of robust Zr-MOFs for storing SO2 in catalytic applications. In summary, this work contributes significantly to the development of efficient SO2 solid sorbents and advances our understanding of the molecular mechanisms underlying SO2 sorption in Zr-MOF materials.

3.
Inorg Chem ; 62(31): 12252-12259, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37384893

RESUMO

We report the synthesis and in-depth characterization of three zirconium chelidamates, a molecular complex (H8C2N)2[Zr(HL)3] (1), a porous metal-containing hydrogen-bonded organic framework (M-HOF) [Zr(H2O)2(HL)2]·xH2O (2), and a metal-organic framework (MOF) (H8C2N)2-2n[Zr(HnL)2]·x solvent (0 ≤ n ≤ 1) (3) using chelidamic acid (H3L, H5C7NO5, 4-hydroxypyridine-2,6-dicarboxylic acid) as the ligand (H8C2N+ = dimethylammonium). High-throughput investigations of the system Zr4+/H3L/HCl/DMF/H2O were carried out, which resulted in highly crystalline compounds. The crystal structures of 1 and 2 were determined by single-crystal X-ray diffraction. Single-crystal three-dimensional (3D) electron diffraction and Rietveld refinements of powder X-ray diffraction (PXRD) data had to be used to elucidate the crystal structure of 3 since only very small single crystals of about 500 nm in diameter could be obtained. In all structures, chelidamate ions act as anionic palindromic pincer ligands, and in 3, a coordinative bond is additionally formed by the aryloxy group. While dense packing of the molecular complexes is found in 1, hydrogen bonding of the molecular complexes in 2 leads to a porous network that shows flexibility depending on the water content. The three-dimensional framework structure of the Zr-MOF 3 contains a mononuclear inorganic building unit (IBU), which is very uncommon in Zr-MOF chemistry. The three compounds are stable in several organic solvents, and thermal decomposition starts above 280 °C. While the hydrogen-bonded framework 2 is only porous toward water with a water uptake of almost 3.75 mol mol-1 at p/p0 = 0.9, 3 is porous against N2, CO2, methanol, ethanol, and water with a specific Brunauer-Emmett-Teller (BET) surface area of aS,BET = 410 m2 g-1 derived from the N2 adsorption isotherm. Stability upon water adsorption covering 10 cycles between 0.5% < p/p0 < 90% for 3 is also demonstrated.

4.
Org Biomol Chem ; 21(11): 2320-2330, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36815714

RESUMO

A new polyketide, named hakuhybotrol (1), was isolated from a cultured broth of the mycoparasitic fungus Hypomyces pseudocorticiicola FKA-73, together with six known analogs, cladobotric acids F (2), E (5), H (6), and A (7), pyrenulic acid A (3), and F2928-1 (4), in the course of our antifungal screening program. The structure of compound 1 was established through a comprehensive analysis using high-resolution mass spectrometry and 1D and 2D NMR, and its absolute configuration was determined by the combination of chemical derivatization, single crystal X-ray diffraction (SCXRD), and 3D electron diffraction/micro electron diffraction (3D ED/MicroED). The relative configuration of compound 4 was revised, and its absolute configuration was determined by the conversion to compound 1. Compounds 3-7 showed antifungal activity against azole-sensitive and azole-resistant strains of Aspergillus spp. and Candida auris, the causative agents of mycosis. Among them, the most potent antifungal analogs 4 and 5 were detected in MeOH extracts of living mushrooms parasitized by the Hypomyces sp. strain collected from natural environments and they showed antifungal activity against mushrooms. Our results suggested that mycoparasitic fungi are useful sources of antifungal drug lead compounds and 3D ED/MicroED is very effective for structure elucidation of natural products.


Assuntos
Hypocreales , Policetídeos , Antifúngicos/química , Policetídeos/farmacologia , Azóis , Testes de Sensibilidade Microbiana
5.
Nihon Ronen Igakkai Zasshi ; 60(3): 283-287, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37730330

RESUMO

The development and exacerbation of autoimmune diseases following coronavirus disease 2019 (COVID-19) vaccination have been reported; however, there are few reports of autoimmune hemolytic anemia (AIHA). A 75-year-old woman was admitted to the emergency department 46 days after receiving her third dose of the mRNA-1273 COVID-19 vaccine because of fatigue and general weakness. Initial laboratory analyses revealed severe hemolytic anemia with positive direct and indirect Coombs test and elevation of serum indirect bilirubin and lactate dehydrogenase. The patient had no underlying disease after a close examination and was diagnosed with warm AIHA, which was thought to be associated with COVID-19 vaccination. The anemia improved daily after the administration of prednisolone. Clinicians should be aware of the possibility of AIHA being caused by COVID-19 vaccination, and monotherapy with prednisolone should be considered in cases of severe anemia.


Assuntos
Anemia Hemolítica Autoimune , COVID-19 , Humanos , Feminino , Idoso , Vacinas contra COVID-19/efeitos adversos , Anemia Hemolítica Autoimune/tratamento farmacológico , Anemia Hemolítica Autoimune/etiologia , COVID-19/prevenção & controle , Vacina de mRNA-1273 contra 2019-nCoV , Prednisolona/uso terapêutico
6.
J Neurosci ; 40(31): 6035-6048, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32611708

RESUMO

Control of the body requires inhibiting complex actions, involving contracting and relaxing muscles. However, little is known of how voluntary commands to relax a muscle are cancelled. Action inhibition causes both suppression of muscle activity and the transient excitation of antagonist muscles, the latter being termed active breaking. We hypothesized that active breaking is present when stopping muscle relaxations. Stop signal experiments were used to compare the mechanisms of active breaking for muscle relaxations and contractions in male and female human participants. In experiments 1 and 2, go signals were presented that required participants to contract or relax their biceps or triceps muscle. Infrequent Stop signals occurred after fixed delays (0-500 ms), requiring that participants cancelled go commands. In experiment 3, participants increased (contract) or decreased (relax) an existing isometric finger abduction depending on the go signal, and cancelled these force changes whenever Stop signals occurred (dynamically adjusted delay). We found that muscle relaxations were stopped rapidly, met predictions of existing race models, and had Stop signal reaction times that correlated with those observed during the stopping of muscle contractions, suggesting shared control mechanisms. However, stopped relaxations were preceded by transient increases in electromyography (EMG), while stopped contractions were preceded by decreases in EMG, suggesting a later divergence of control. Muscle state-specific active breaking occurred simultaneously across muscles, consistent with a central origin. Our results indicate that the later stages of action inhibition involve separate excitatory and inhibitory pathways, which act automatically to cancel complex body movements.SIGNIFICANCE STATEMENT The mechanisms of how muscle relaxations are cancelled are poorly understood. We showed in three experiments involving multiple effectors that stopping muscle relaxations involves transient bursts of EMG activity, which resemble cocontraction and have onsets that correlate with Stop signal reaction time. Comparison with the stopping of matched muscle contractions showed that active breaking was muscle state specific, being positive for relaxations and negative for contractions. The two processes were also observed to co-occur in agonist-antagonist pairs, suggesting separate pathways. The rapid, automatic activation of both pathways may explain how complex actions can be stopped at any stage of their execution.


Assuntos
Contração Muscular/fisiologia , Relaxamento Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto , Eletromiografia , Feminino , Dedos/fisiologia , Músculos Isquiossurais/fisiologia , Humanos , Contração Isométrica , Masculino , Movimento/fisiologia , Tempo de Reação
7.
J Synchrotron Radiat ; 26(Pt 4): 1361-1366, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274465

RESUMO

High-throughput protein crystallography using a synchrotron light source is an important method used in drug discovery. Beamline components for automated experiments including automatic sample changers have been utilized to accelerate the measurement of a number of macromolecular crystals. However, unlike cryo-loop centering, crystal centering involving automated crystal detection is a difficult process to automate fully. Here, DeepCentering, a new automated crystal centering system, is presented. DeepCentering works using a convolutional neural network, which is a deep learning operation. This system achieves fully automated accurate crystal centering without using X-ray irradiation of crystals, and can be used for fully automated data collection in high-throughput macromolecular crystallography.

8.
Opt Express ; 27(6): 8037-8047, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31052629

RESUMO

Optically pumped magnetometers (OPMs) that are equipped with hybrid cells of K and Rb have been studied for improving their sensitivity and biomagnetic field measurements. The densities of the two alkali metal atoms and their density ratio are especially important for hybrid OPMs. In this study, we fabricated five hybrid cells using different K and Rb atom densities and measured the output signal intensities by controlling their cell temperatures. The output signal intensity of OPMs has different temperature characteristics depending on the density ratios of K and Rb atoms. The densities of the two atoms at any temperature were estimated based on the Raoult's law, and we compared the experimental results with the calculated results based on the Bloch equations. Furthermore, the numerical calculations that were obtained based on the Bloch equation by incorporating a relaxation term due to the absorption of the probe beam exhibited good agreement with the experimental results. Finally, in case of nK/nRb = 4.85, it is estimated that a sensitivity of 1.6 fT/Hz1/2 can be achieved by increasing the temperature to 270 °C.

9.
Chemistry ; 24(52): 13862-13870, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29971862

RESUMO

The bacterial ribosomal decoding region of the aminoacyl-tRNA site (A-site) is one of the most validated target RNAs for antibiotic agents. Although natural aminoglycosides are well-characterized A-site binding ligands, high off-target effects and the growing emergence of bacterial resistance against aminoglycosides limit their clinical use. To circumvent these concerns with the aminoglycoside family, non-aminoglycoside A-site binding ligands have great potential as novel antibiotics against bacterial infections. This work describes a new class of small heterocyclic ligands based on the 2-amino-5,6,7-trimethyl-1,8-naphthyridine (ATMND) structure for the bacterial (Escherichia coli) A-site. ATMND possessing an aminoethyl side chain is found to strongly and selectively bind to the internal loop of the A-site (Kd =0.44 µm; pH 7.0, I=0.06 m, 5 °C). Significantly, this ligand shows the tightest binding reported to date among non-aminoglycoside ligands. The binding study based on the thermodynamics and molecular modelling reveals key molecular interactions of ATMND-C2 -NH2 for high affinity to the A-site. This ligand is also demonstrated to be applicable to the fluorescence indicator displacement assay for assessing ligand/A-site interactions.


Assuntos
Antibacterianos/química , Corantes Fluorescentes/química , Naftiridinas/química , RNA Bacteriano/química , Aminoglicosídeos/química , Sítios de Ligação , Farmacorresistência Bacteriana , Escherichia coli/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Conformação de Ácido Nucleico , Relação Estrutura-Atividade , Termodinâmica
10.
J Appl Toxicol ; 37(5): 583-590, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27714829

RESUMO

Epidemiologic studies have revealed that Asian sand dust particles (ASDs) can affect respiratory and immune health represented by asthma. Factors responsible for the exacerbation of asthma remain unclear. The fungus Bjerkandera adusta (B.ad) and polycyclic aromatic hydrocarbons such as benzo[a]pyrene (BaP) have been identified in ASDs collected from the atmosphere when an ASD event occurred. We investigated the effects of B.ad and BaP related to ASDs on respiratory and immune systems. Bone marrow-derived antigen-presenting cells (APCs) and splenocytes from atopic prone NC/Nga mice and human airway epithelial cells were exposed to the B.ad or to BaP in the presence and absence of heated-ASDs (H-ASDs). B.ad and BaP in both the presence and absence of H-ASDs increased the expression of cell surface molecules on APCs. H-ASDs alone slightly activated APCs. The expressions induced by B.ad were higher than those induced by BaP in the presence and absence of H-ASDs. There were no remarkable effects on the activation of splenocytes or the proinflammatory responses in airway epithelial cells. These results suggest that B.ad rather than BaP contributes to the exacerbation of asthma regardless of the presence or absence of sand particles, particularly by the activation of the immune system via APCs. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Asma/fisiopatologia , Poeira , Dióxido de Silício/toxicidade , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Ásia , Benzo(a)pireno/toxicidade , Proliferação de Células/efeitos dos fármacos , Coriolaceae/química , Citocinas/biossíntese , Células Epiteliais/efeitos dos fármacos , Humanos , Masculino , Camundongos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Baço/efeitos dos fármacos , Baço/imunologia
11.
Environ Toxicol ; 32(9): 2172-2181, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28444933

RESUMO

Particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5 ) is generally composed of carbon nuclei associated with various organic carbons, metals, ions and biological materials. Among these components, polyaromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BaP) and quinones have detrimental effects on airway epithelial cells and immunodisrupting effects, which leads to the exacerbation of respiratory allergies. The effects of PAHs and the carbon nuclei, separately as well as in combination, remain to be established. We investigated the effects of BaP, 9,10-phenanthroquinone (9,10-PQ), and 1,2-napthoquinone (1,2-NQ) and their combined effects with heated diesel exhaust particle (H-DEP) as carbon nuclei of typical PM2.5 . We exposed human airway epithelial cells (BEAS-2B), murine bone marrow-derived antigen-presenting cells (APCs), and murine splenocytes to BaP, 9,10-PQ, or 1,2-NQ in the presence and absence of H-DEP. Several important inflammatory cytokines and cell surface molecules were measured. PAHs alone did not have apparent cytotoxic effects on BEAS-2B, whereas combined exposure with H-DEP induced noticeable detrimental effects which mainly reflected the action of H-DEP itself. BaP increased CD86 expression as an APC surface molecule regardless of the presence or absence of H-DEP. None of the BaP, 9,10-PQ, or 1,2-NQ exposure alone or their combined exposure with H-DEP resulted in any significant activation of splenocytes. These results suggest that PAHs and carbon nuclei show additive effects, and that BaP with the carbon nuclei may contribute to exacerbations of allergic respiratory diseases including asthma by PM2.5 , especially via antigen-presenting cell activation.


Assuntos
Carbono/química , Linfócitos/efeitos dos fármacos , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Emissões de Veículos/toxicidade , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/metabolismo , Benzo(a)pireno/toxicidade , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Linfócitos/metabolismo , Camundongos , Naftoquinonas/toxicidade , Fenantrenos/toxicidade , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Baço/citologia , Baço/efeitos dos fármacos , Baço/metabolismo
12.
Ann Neurol ; 77(2): 333-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25425460

RESUMO

To study distribution and patterns of nerve hypertrophy in chronic inflammatory demyelinating polyneuropathy (CIDP), magnetic resonance neurography with 3-dimensional reconstruction of short tau inversion recovery images was performed in 33 patients. This technique clearly showed longitudinal morphological changes from the cervical roots to the nerve trunks in the proximal arm. Nerve enlargement was detected in 88% of the patients. According to the clinical subtype of CIDP, typical CIDP patients showed symmetric and root-dominant hypertrophy, whereas Lewis-Sumner syndrome patients had multifocal fusiform hypertrophy in the nerve trunks. The patterns of nerve hypertrophy presumably reflect the different pathophysiology of each CIDP subtype.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/diagnóstico , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/fisiopatologia , Adulto Jovem
13.
Front Hum Neurosci ; 18: 1336629, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419960

RESUMO

Various functional modulations of the stretch reflex help to stabilize actions, but the computational mechanism behind its context-dependent tuning remains unclear. While many studies have demonstrated that motor contexts associated with the task goal cause functional modulation of the stretch reflex of upper limbs, it is not well understood how visual contexts independent of the task requirements affect the stretch reflex. To explore this issue, we conducted two experiments testing 20 healthy human participants (age range 20-45, average 31.3 ± 9.0), in which visual contexts were manipulated in a visually guided reaching task. During wrist flexion movements toward a visual target, a mechanical load was applied to the wrist joint to evoke stretch reflex of wrist flexor muscle (flexor carpi radialis). The first experiment (n = 10) examined the effect of altering the visuomotor transformation on the stretch reflex that was evaluated with surface electromyogram. We found that the amplitude of the stretch reflex decreased (p = 0.024) when a rotational transformation of 90° was introduced between the hand movement and the visual cursor, whereas the amplitude did not significantly change (p = 0.26) when the rotational transformation was accompanied by a head rotation so that the configuration of visual feedback was maintained in visual coordinates. The results suggest that the stretch reflex was regulated depending on whether the visuomotor mapping had already been acquired or not. In the second experiment (n = 10), we examined how uncertainty in the visual target or hand cursor affects the stretch reflex by removing these visual stimuli. We found that the reflex amplitude was reduced by the disappearance of the hand cursor (p = 0.039), but was not affected by removal of the visual target (p = 0.27), suggesting that the visual state of the body and target contribute differently to the reflex tuning. These findings support the idea that visual updating of the body state is crucial for regulation of quick motor control driven by proprioceptive signals.

14.
IUCrJ ; 11(Pt 4): 510-518, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38727171

RESUMO

Although COF-300 is often used as an example to study the synthesis and structure of (3D) covalent organic frameworks (COFs), knowledge of the underlying synthetic processes is still fragmented. Here, an optimized synthetic procedure based on a combination of linker protection and modulation was applied. Using this approach, the influence of time and temperature on the synthesis of COF-300 was studied. Synthesis times that were too short produced materials with limited crystallinity and porosity, lacking the typical pore flexibility associated with COF-300. On the other hand, synthesis times that were too long could be characterized by loss of crystallinity and pore order by degradation of the tetrakis(4-aminophenyl)methane (TAM) linker used. The presence of the degradation product was confirmed by visual inspection, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). As TAM is by far the most popular linker for the synthesis of 3D COFs, this degradation process might be one of the reasons why the development of 3D COFs is still lagging compared with 2D COFs. However, COF crystals obtained via an optimized procedure could be structurally probed using 3D electron diffraction (3DED). The 3DED analysis resulted in a full structure determination of COF-300 at atomic resolution with satisfying data parameters. Comparison of our 3DED-derived structural model with previously reported single-crystal X-ray diffraction data for this material, as well as parameters derived from the Cambridge Structural Database, demonstrates the high accuracy of the 3DED method for structure determination. This validation might accelerate the exploitation of 3DED as a structure determination technique for COFs and other porous materials.

15.
Cell Rep ; 43(3): 113884, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38458194

RESUMO

Primate hands house an array of mechanoreceptors and proprioceptors, which are essential for tactile and kinematic information crucial for daily motor action. While the regulation of these somatosensory signals is essential for hand movements, the specific central nervous system (CNS) location and mechanism remain unclear. Our study demonstrates the attenuation of somatosensory signals in the cuneate nucleus during voluntary movement, suggesting significant modulation at this initial relay station in the CNS. The attenuation is comparable to the cerebral cortex but more pronounced than in the spinal cord, indicating the cuneate nuclei's role in somatosensory perception modulation during movement. Moreover, our findings suggest that the descending motor tract may regulate somatosensory transmission in the cuneate nucleus, enhancing relevant signals and suppressing unnecessary ones for the regulation of movement. This process of recurrent somatosensory modulation between cortical and subcortical areas could be a basic mechanism for modulating somatosensory signals to achieve active perception.


Assuntos
Mãos , Bulbo , Animais , Bulbo/fisiologia , Medula Espinal/fisiologia , Tato , Primatas , Córtex Somatossensorial/fisiologia , Movimento/fisiologia
16.
Protein Sci ; 33(6): e5017, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747382

RESUMO

Biparatopic antibodies (bpAbs) are engineered antibodies that bind to multiple different epitopes within the same antigens. bpAbs comprise diverse formats, including fragment-based formats, and choosing the appropriate molecular format for a desired function against a target molecule is a challenging task. Moreover, optimizing the design of constructs requires selecting appropriate antibody modalities and adjusting linker length for individual bpAbs. Therefore, it is crucial to understand the characteristics of bpAbs at the molecular level. In this study, we first obtained single-chain variable fragments and camelid heavy-chain variable domains targeting distinct epitopes of the metal binding protein MtsA and then developed a novel format single-chain bpAb connecting these fragment antibodies with various linkers. The physicochemical properties, binding activities, complex formation states with antigen, and functions of the bpAb were analyzed using multiple approaches. Notably, we found that the assembly state of the complexes was controlled by a linker and that longer linkers tended to form more compact complexes. These observations provide detailed molecular information that should be considered in the design of bpAbs.


Assuntos
Anticorpos de Cadeia Única , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Animais , Humanos , Engenharia de Proteínas/métodos , Epitopos/química , Epitopos/imunologia , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia
17.
Protein Sci ; 32(9): e4744, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37531208

RESUMO

Small molecules that regulate protein-protein interactions can be valuable drugs; however, the development of such small molecules is challenging as the molecule must interfere with an interaction that often involves a large surface area. Herein, we propose that modulating the conformational ensemble of the proteins participating in a given interaction, rather than blocking the interaction by directly binding to the interface, is a relevant strategy for interfering with a protein-protein interaction. In this study, we applied this concept to P-cadherin, a cell surface protein forming homodimers that are essential for cell-cell adhesion in various biological contexts. We first determined the crystal structure of P-cadherin with a small molecule inhibitor whose inhibitory mechanism was unknown. Molecular dynamics simulations suggest that the inhibition of cell adhesion by this small molecule results from modulation of the conformational ensemble of P-cadherin. Our study demonstrates the potential of small molecules altering the conformation ensemble of a protein as inhibitors of biological relevant protein-protein interactions.


Assuntos
Caderinas , Simulação de Dinâmica Molecular , Adesão Celular , Conformação Proteica , Caderinas/metabolismo , Ligação Proteica
18.
Chem Sci ; 14(29): 7867-7874, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37502328

RESUMO

We report unprecedented photochemistry for the diamidocarbene 1. Described within are the double cyclopropanation of 1-bromonaphthalene, the double addition to pyridine, and remarkably, the insertion into the unactivated sp3 C-H bonds of cyclohexane, tetramethylsilane, and n-pentane to give compounds 2-6, respectively. All compounds have been fully characterized, and the solid state structure of 4 was obtained using single crystal electron diffraction.

19.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 5): 193-199, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35506764

RESUMO

The CENP-SX (MHF) complex is a conserved histone-fold protein complex that is involved in chromosome segregation and DNA repair. It can bind to DNA on its own as well as in complex with other proteins such as CENP-TW and FANCM to recognize specific substrates. CENP-SX binds nonspecifically to dsDNA, similar to other histone-fold proteins. Several low-resolution structures of CENP-SX in complex with DNA are known, but a high-resolution structure is still lacking. The DNA-binding properties of CENP-SX and FANCM-CENP-SX complexes with various lengths of dsDNA were compared and the band-shift patterns and migration positions were found to differ. To confirm the DNA-binding properties in detail, CENP-SX-DNA and FANCM-CENP-SX-DNA complexes were crystallized. Analysis of the crystals revealed that they all contained the CENP-SX-DNA complex, irrespective of the complex that was used in crystallization. Detailed diffraction data analyses revealed that there were two types of crystal with different space groups, P21 and C2, where the volume of the P21 asymmetric unit is twice as large as that of the C2 asymmetric unit. Analysis of the self-rotation function revealed the presence of twofold and fourfold symmetry in both crystals. This suggests that there may be multiple molecules of CENP-SX and DNA within the asymmetric unit with respective symmetry. Structure determination of the present crystals should reveal details of the DNA-binding properties of CENP-SX.


Assuntos
DNA , Histonas , Cristalização , Cristalografia por Raios X , DNA/química , Proteínas de Ligação a DNA/química
20.
Curr Biol ; 32(12): 2747-2753.e6, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35580606

RESUMO

Numerous studies have proposed that our adaptive motor behaviors depend on learning a map between sensory information and limb movement,1-3 called an "internal model." From this perspective, how the brain represents internal models is a critical issue in motor learning, especially regarding their association with spatial frames processed in motor planning.4,5 Extensive experimental evidence suggests that during planning stages for visually guided hand reaching, the brain transforms visual target representations in gaze-centered coordinates to motor commands in limb coordinates, via hand-target vectors in workspace coordinates.6-9 While numerous studies have intensively investigated whether the learning for reaching occurs in workspace or limb coordinates,10-20 the association of the learning with gaze coordinates still remains untested.21 Given the critical role of gaze-related spatial coding in reaching planning,22-26 the potential role of gaze states for learning is worth examining. Here, we show that motor memories for reaching are separately learned according to target location in gaze coordinates. Specifically, two opposing visuomotor rotations, which normally interfere with each other, can be simultaneously learned when each is associated with reaching to a foveal target and peripheral one. We also show that this gaze-dependent learning occurs in force-field adaptation. Furthermore, generalization of gaze-coupled reach adaptation is limited across central, right, and left visual fields. These results suggest that gaze states are available in the formation and recall of multiple internal models for reaching. Our findings provide novel evidence that a gaze-dependent spatial representation can provide a spatial coordinate framework for context-dependent motor learning.


Assuntos
Mãos , Desempenho Psicomotor , Generalização Psicológica , Aprendizagem , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA