Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 142(6): 857-67, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20817278

RESUMO

Alzheimer's Disease (AD) is complicated by pro-oxidant intraneuronal Fe(2+) elevation as well as extracellular Zn(2+) accumulation within amyloid plaque. We found that the AD ß-amyloid protein precursor (APP) possesses ferroxidase activity mediated by a conserved H-ferritin-like active site, which is inhibited specifically by Zn(2+). Like ceruloplasmin, APP catalytically oxidizes Fe(2+), loads Fe(3+) into transferrin, and has a major interaction with ferroportin in HEK293T cells (that lack ceruloplasmin) and in human cortical tissue. Ablation of APP in HEK293T cells and primary neurons induces marked iron retention, whereas increasing APP695 promotes iron export. Unlike normal mice, APP(-/-) mice are vulnerable to dietary iron exposure, which causes Fe(2+) accumulation and oxidative stress in cortical neurons. Paralleling iron accumulation, APP ferroxidase activity in AD postmortem neocortex is inhibited by endogenous Zn(2+), which we demonstrate can originate from Zn(2+)-laden amyloid aggregates and correlates with Aß burden. Abnormal exchange of cortical zinc may link amyloid pathology with neuronal iron accumulation in AD.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/metabolismo , Ceruloplasmina/antagonistas & inibidores , Zinco/metabolismo , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/química , Animais , Linhagem Celular , Ceruloplasmina/química , Ceruloplasmina/metabolismo , Humanos , Ferro/metabolismo , Camundongos , Alinhamento de Sequência
2.
Chem Soc Rev ; 52(23): 8295-8318, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37910139

RESUMO

Imaging techniques permit the study of the molecular interactions that underlie health and disease. Each imaging technique collects unique chemical information about the cellular environment. Multimodal imaging, using a single probe that can be detected by multiple imaging modalities, can maximise the information extracted from a single cellular sample by combining the results of different imaging techniques. Of particular interest in biological imaging is the combination of the specificity and sensitivity of optical fluorescence microscopy (OFM) with the quantitative and element-specific nature of X-ray fluorescence microscopy (XFM). Together, these techniques give a greater understanding of how native elements or therapeutics affect the cellular environment. This review focuses on recent studies where both techniques were used in conjunction to study cellular systems, demonstrating the breadth of biological models to which this combination of techniques can be applied and the potential for these techniques to unlock untapped knowledge of disease states.


Assuntos
Microscopia , Imagem Óptica , Raios X
3.
Artigo em Inglês | MEDLINE | ID: mdl-33649114

RESUMO

Intravenous administration of the last-line polymyxins results in poor drug exposure in the lungs and potential nephrotoxicity; while inhalation therapy offers better pharmacokinetics/pharmacodynamics for pulmonary infections by delivering the antibiotic to the infection site directly. However, polymyxin inhalation therapy has not been optimized and adverse effects can occur. This study aimed to quantitatively determine the intracellular accumulation and distribution of polymyxins in single human alveolar epithelial A549 cells. Cells were treated with an iodine-labeled polymyxin probe FADDI-096 (5.0 and 10.0 µM) for 1, 4, and 24 h. Concentrations of FADDI-096 in single A549 cells were determined by synchrotron-based X-ray fluorescence microscopy. Concentration- and time-dependent accumulation of FADDI-096 within A549 cells was observed. The intracellular concentrations (mean ± SEM, n ≥ 189) of FADDI-096 were 1.58 ± 0.11, 2.25 ± 0.10, and 2.46 ± 0.07 mM following 1, 4 and 24 h of treatment at 10 µM, respectively. The corresponding intracellular concentrations following the treatment at 5 µM were 0.05 ± 0.01, 0.24 ± 0.04, and 0.25 ± 0.02 mM (n ≥ 189). FADDI-096 was mainly localized throughout the cytoplasm and nuclear region over 24 h. The intracellular zinc concentration increased in a concentration- and time-dependent manner. This is the first study to quantitatively map the accumulation of polymyxins in human alveolar epithelial cells and provides crucial insights for deciphering the mechanisms of their pulmonary toxicity. Importantly, our results may shed light on the optimization of inhaled polymyxins in patients and the development of new-generation safer polymyxins.

4.
Anal Chem ; 89(22): 12168-12175, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29045128

RESUMO

Analytical approaches that preserve the endogenous state of the examined system are essential for the in vivo study of bioinorganics. X-ray fluorescence microscopy of biological samples can map elements in vivo at subcellular resolutions in tissue samples and multicellular organisms. However, X-ray irradiation induces modifications that accumulate with dose. Consequently, the utility of X-ray fluorescence microscopy is intrinsically limited by the radiation damage it causes and the degree to which it alters the target features of interest. Identification of the dose threshold, below which the integrity of the specimen and its elemental distribution is preserved, is required to ensure valid interpretation of concentrations. Here we use the nematode, Caenorhabditis elegans, to explore these issues using three chemical-free specimen preparations: lyophilization, cryofixation, and live. We develop quantitative methods for investigating damage and present dose limits for each preparation pertaining to the micrometer-scale spatial distribution of specific analytes (potassium, calcium, manganese, iron, and zinc), and discuss dose-appropriate guidelines for X-ray fluorescence microscopy of microscale biological samples.


Assuntos
Microscopia de Fluorescência/métodos , Doses de Radiação , Raios X , Animais , Caenorhabditis elegans , Cálcio/análise , Ferro/análise , Manganês/análise , Potássio/análise , Zinco/análise
5.
Analyst ; 141(4): 1434-9, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26811851

RESUMO

In the life sciences, small model-organisms are an established research platform. Due to the economy of culturing and maintenance animals such as the roundworm Caenorhabditis elegans, and the fly Drosophila melanogaster, have been instrumental for investigating key genetic pathways, early development, neuronal function, as well as disease pathogenesis and toxicology. Small model organisms have also found utility in the study of inorganic biochemistry, where the role of metal ion cofactors are investigated for numerous fundamental cellular processes. The metabolism and homeostasis of metal ions is also central to many aspects of biology and disease. Accurate quantification of endogenous metal ion content is an important determinant for many biological questions. There is currently no standardised method for quantifying biometal content in individual C. elegans or estimating the variation between individuals within clonal populations. Here, we have determined that ten or more adults are required to quantify physiologically important metals via inductively coupled plasma mass spectrometry (ICP-MS). The accuracy and precision of this method was then compared to synchrotron-based X-ray fluorescence microscopy (XFM) to determine the variation between isogenic, developmentally synchronous C. elegans adults.


Assuntos
Caenorhabditis elegans/química , Espectrometria de Massas/métodos , Metais/análise , Animais , Metais/química
6.
Anal Chem ; 87(13): 6639-45, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26020362

RESUMO

Redox-active metals in the brain mediate numerous biochemical processes and are also implicated in a number of neurodegenerative diseases. A number of different approaches are available for quantitatively measuring the spatial distribution of biometals at an image resolution approaching the subcellular level. Measured biometal levels obtained using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS; spatial resolution 15 µm × 15 µm) were within the range of those obtained using X-ray fluorescence microscopy (XFM; spatial resolution 2 µm × 7 µm) and regional changes in metal concentration across discrete brain regions were replicated to the same degree. Both techniques are well suited to profiling changes in regional biometal distribution between healthy and diseased brain tissues, but absolute quantitation of metal levels varied significantly between methods, depending on the metal of interest. Where all possible variables affect metal levels, independent of a treatment/phenotype are controlled, either method is suitable for examining differences between experimental groups, though, as with any method for imaging post mortem brain tissue, care should be taken when interpreting the total metal levels with regard to physiological concentrations.


Assuntos
Espectrometria de Massas/métodos , Metais/análise , Microscopia de Fluorescência/métodos , Sistema Nervoso/química , Animais , Lasers , Camundongos , Camundongos Endogâmicos C57BL
7.
Anal Chem ; 87(3): 1590-5, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25553489

RESUMO

Polymyxin is the last-line therapy against Gram-negative 'superbugs'; however, dose-limiting nephrotoxicity can occur in up to 60% of patients after intravenous administration. Understanding the accumulation and concentration of polymyxin within renal tubular cells is essential for the development of novel strategies to ameliorate its nephrotoxicity and to develop safer, new polymyxins. We designed and synthesized a novel dual-modality iodine-labeled fluorescent probe for quantitative mapping of polymyxin in kidney proximal tubular cells. Measured by synchrotron X-ray fluorescence microscopy, polymyxin concentrations in single rat (NRK-52E) and human (HK-2) kidney tubular cells were approximately 1930- to 4760-fold higher than extracellular concentrations. Our study is the first to quantitatively measure the significant uptake of polymyxin in renal tubular cells and provides crucial information for the understanding of polymyxin-induced nephrotoxicity. Importantly, our approach represents a significant methodological advancement in determination of drug uptake for single-cell pharmacology.


Assuntos
Antibacterianos/metabolismo , Química Farmacêutica , Túbulos Renais/metabolismo , Microscopia de Fluorescência/métodos , Polimixinas/metabolismo , Análise de Célula Única/métodos , Síncrotrons , Animais , Antibacterianos/análise , Células Cultivadas , Corantes Fluorescentes , Humanos , Radioisótopos do Iodo , Túbulos Renais/citologia , Modelos Moleculares , Estresse Oxidativo , Polimixinas/análise , Ratos , Raios X
8.
J Biol Inorg Chem ; 20(6): 979-87, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26153547

RESUMO

The main role of the animal gastrointestinal (GI) tract is the selective absorption of dietary nutrients from ingested food sources. One class of vital micronutrients are the essential biometals such as copper, zinc and iron, which participate in a plethora of biological process, acting as enzymatic or structural co-factors for numerous proteins and also as important cellular signalling molecules. To help elucidate the mechanisms by which biometals are absorbed from the diet, we mapped elemental distribution in entire, intact Drosophila larval GI tracts using synchrotron X-ray fluorescence microscopy. Our results revealed distinct regions of the GI tract enriched for specific metals. Copper was found to be concentrated in the copper cell region but also in the region directly anterior to the copper cells and unexpectedly, in the middle midgut/iron cell region as well. Iron was observed exclusively in the iron cell region, confirming previous work with iron-specific histological stains. Zinc was observed throughout the GI tract with an increased accumulation in the posterior midgut region, while manganese was seen to co-localize with calcium specifically in clusters in the distal Malpighian tubules. This work simultaneously reveals distribution of a number of biologically important elements in entire, intact GI tracts. These distributions revealed not only a previously undescribed Ca/Mn co-localization, but also the unexpected presence of additional Cu accumulations in the iron cell region.


Assuntos
Trato Gastrointestinal/metabolismo , Oligoelementos/metabolismo , Animais , Cálcio/análise , Cálcio/metabolismo , Cobre/análise , Cobre/metabolismo , Drosophila , Trato Gastrointestinal/diagnóstico por imagem , Manganês/análise , Manganês/metabolismo , Microscopia de Fluorescência , Radiografia , Oligoelementos/análise , Raios X , Zinco/análise , Zinco/metabolismo
9.
Ann Bot ; 115(1): 41-53, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25399024

RESUMO

BACKGROUND AND AIMS: Globally, zinc deficiency is one of the most important nutritional factors limiting crop yield and quality. Despite widespread use of foliar-applied zinc fertilizers, much remains unknown regarding the movement of zinc from the foliar surface into the vascular structure for translocation into other tissues and the key factors affecting this diffusion. METHODS: Using synchrotron-based X-ray fluorescence microscopy (µ-XRF), absorption of foliar-applied zinc nitrate or zinc hydroxide nitrate was examined in fresh leaves of tomato (Solanum lycopersicum) and citrus (Citrus reticulatus). KEY RESULTS: The foliar absorption of zinc increased concentrations in the underlying tissues by up to 600-fold in tomato but only up to 5-fold in citrus. The magnitude of this absorption was influenced by the form of zinc applied, the zinc status of the treated leaf and the leaf surface to which it was applied (abaxial or adaxial). Once the zinc had moved through the leaf surface it appeared to bind strongly, with limited further redistribution. Regardless of this, in these underlying tissues zinc moved into the lower-order veins, with concentrations 2- to 10-fold higher than in the adjacent tissues. However, even once in higher-order veins, the movement of zinc was still comparatively limited, with concentrations decreasing to levels similar to the background within 1-10 mm. CONCLUSIONS: The results advance our understanding of the factors that influence the efficacy of foliar zinc fertilizers and demonstrate the merits of an innovative methodology for studying foliar zinc translocation mechanisms.


Assuntos
Citrus/metabolismo , Fertilizantes , Solanum lycopersicum/metabolismo , Zinco/metabolismo , Fatores Etários , Difusão , Microscopia de Fluorescência , Folhas de Planta/metabolismo , Especificidade da Espécie , Síncrotrons
10.
New Phytol ; 201(4): 1251-1262, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24206613

RESUMO

• Accumulation of arsenic (As) within plant tissues represents a human health risk, but there remains much to learn regarding the speciation of As within plants. • We developed synchrotron-based fluorescence-X-ray absorption near-edge spectroscopy (fluorescence-XANES) imaging in hydrated and fresh plant tissues to provide laterally resolved data on the in situ speciation of As in roots of wheat (Triticum aestivum) and rice (Oryza sativa) exposed to 2 µM As(V) or As(III). • When exposed to As(V), the As was rapidly reduced to As(III) within the root, with As(V) calculated to be present only in the rhizodermis. However, no uncomplexed As(III) was detected in any root tissues, because of the efficient formation of the As(III)-thiol complex - this As species was calculated to account for all of the As in the cortex and stele. The observation that uncomplexed As(III) was below the detection limit in all root tissues explains why the transport of As to the shoots is low, given that uncomplexed As(III) is the major As species transported within the xylem and phloem. • Using fluorescence-XANES imaging, we have provided in situ data showing the accumulation and transformation of As within hydrated and fresh root tissues.


Assuntos
Arsênio/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Triticum/metabolismo , Espectroscopia por Absorção de Raios X , Fluorescência , Compostos de Sulfidrila/metabolismo
11.
Anal Bioanal Chem ; 401(3): 853-64, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21533642

RESUMO

X-ray fluorescence microscopy (XFM) facilitates high-sensitivity quantitative imaging of trace metals at high spatial resolution over large sample areas and can be applied to a diverse range of biological samples. Accurate determination of elemental content from recorded spectra requires proper calibration of the XFM instrument under the relevant operating conditions. Here, we describe the manufacture, characterization, and utilization of multi-element thin-film reference foils for use in calibration of XFM measurements of biological and other specimens. We have used these internal standards to assess the two-dimensional distribution of trace metals in a thin tissue section of a rat hippocampus. The data used in this study was acquired at the XFM beamline of the Australian Synchrotron using a new 384-element array detector (Maia) and at beamline 2-ID-E at the Advanced Photon Source. Post-processing of samples by different fixation techniques was investigated, with the conclusion that differences in solvent type and sample handling can significantly alter elemental content. The present study highlights the quantitative capability, high statistical power, and versatility of the XFM technique for mapping trace metals in biological samples, e.g., brain tissue samples in order to help understand neurological processes, especially when implemented in conjunction with a high-performance detector such as Maia.


Assuntos
Química Encefálica , Microscopia de Fluorescência , Animais , Cromo/química , Ferro/química , Níquel/química , Ratos , Titânio/química , Elementos de Transição/química , Raios X
12.
Proteomics ; 10(12): 2377-95, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20391539

RESUMO

The primary constituent of the amyloid plaque, beta-amyloid (Abeta), is thought to be the causal "toxic moiety" of Alzheimer's disease. However, despite much work focused on both Abeta and its parent protein, amyloid precursor protein (APP), the functional roles of APP and its cleavage products remain to be fully elucidated. Protein-protein interaction networks can provide insight into protein function, however, high-throughput data often report false positives and are in frequent disagreement with low-throughput experiments. Moreover, the complexity of the CNS is likely to be under represented in such databases. Therefore, we curated the published work characterizing both APP and Abeta to create a protein interaction network of APP and its proteolytic cleavage products, with annotation, where possible, to the level of APP binding domain and isoform. This is the first time that an interactome has been refined to domain level, essential for the interpretation of APP due to the presence of multiple isoforms and processed fragments. Gene ontology and network analysis were used to identify potentially novel functional relationships among interacting proteins.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Biologia de Sistemas , Humanos , Ligação Proteica
13.
Elife ; 92020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32690135

RESUMO

All eukaryotes require iron. Replication, detoxification, and a cancer-protective form of regulated cell death termed ferroptosis, all depend on iron metabolism. Ferrous iron accumulates over adult lifetime in Caenorhabditis elegans. Here, we show that glutathione depletion is coupled to ferrous iron elevation in these animals, and that both occur in late life to prime cells for ferroptosis. We demonstrate that blocking ferroptosis, either by inhibition of lipid peroxidation or by limiting iron retention, mitigates age-related cell death and markedly increases lifespan and healthspan. Temporal scaling of lifespan is not evident when ferroptosis is inhibited, consistent with this cell death process acting at specific life phases to induce organismal frailty, rather than contributing to a constant aging rate. Because excess age-related iron elevation in somatic tissue, particularly in brain, is thought to contribute to degenerative disease, post-developmental interventions to limit ferroptosis may promote healthy aging.


Assuntos
Envelhecimento/metabolismo , Caenorhabditis elegans/metabolismo , Ferroptose/fisiologia , Fragilidade/fisiopatologia , Glutationa/metabolismo , Ferro/metabolismo , Animais
14.
Front Neurosci ; 12: 668, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319344

RESUMO

Background: Neuroinflammation and biometal dyshomeostasis are key pathological features of several neurodegenerative diseases, including Alzheimer's disease (AD). Inflammation and biometals are linked at the molecular level through regulation of metal buffering proteins such as the metallothioneins. Even though the molecular connections between metals and inflammation have been demonstrated, little information exists on the effect of copper modulation on brain inflammation. Methods: We demonstrate the immunomodulatory potential of the copper bis(thiosemicarbazone) complex CuII(atsm) in an neuroinflammatory model in vivo and describe its anti-inflammatory effects on microglia and astrocytes in vitro. Results: By using a sophisticated in vivo magnetic resonance imaging (MRI) approach, we report the efficacy of CuII(atsm) in reducing acute cerebrovascular inflammation caused by peripheral administration of bacterial lipopolysaccharide (LPS). CuII(atsm) also induced anti-inflammatory outcomes in primary microglia [significant reductions in nitric oxide (NO), monocyte chemoattractant protein 1 (MCP-1), and tumor necrosis factor (TNF)] and astrocytes [significantly reduced NO, MCP-1, and interleukin 6 (IL-6)] in vitro. These anti-inflammatory actions were associated with increased cellular copper levels and increased the neuroprotective protein metallothionein-1 (MT1) in microglia and astrocytes. Conclusion: The beneficial effects of CuII(atsm) on the neuroimmune system suggest copper complexes are potential therapeutics for the treatment of neuroinflammatory conditions.

15.
Cell Chem Biol ; 24(10): 1192-1194, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29053948

RESUMO

In this issue of Cell Chemical Biology, Telling et al. (2017) apply advanced X-ray microscopy techniques to reveal magnetite iron species in plaques from a mouse model of Alzheimer's disease. The characterization of abnormal iron chemistry in the disease model highlights the potential for iron to combine with the ß-amyloid peptide and accelerate the disease process.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Ferro/metabolismo , Imagem Molecular , Nanotecnologia
16.
ACS Chem Neurosci ; 8(3): 629-637, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-27958708

RESUMO

The metal ions of iron, copper, and zinc have long been associated with the aggregation of ß-amyloid (Aß) plaques in Alzheimer's disease; an interaction that has been suggested to promote increased oxidative stress and neuronal dysfunction. We examined plaque metal load in the hippocampus of APP/PS1 mice using X-ray fluorescence microscopy to assess how the anatomical location of Aß plaques was influenced by the metal content of surrounding tissue. Immunohistochemical staining of Aß plaques colocalized with areas of increased X-ray scattering power in unstained tissue sections, allowing direct X-ray based-assessment of plaque metal levels in sections subjected to minimal chemical fixation. We identified and mapped 48 individual plaques in four subregions of the hippocampus from four biological replicates. Iron, Cu, and Zn areal concentrations (ng cm-2) were increased in plaques compared to the surrounding neuropil. However, this elevation in metal load reflected the local metal makeup of the surrounding neuropil, where different brain regions are enriched for different metal ions. After correcting for tissue density, only Zn levels remained elevated in plaques. This study suggests that the in vivo binding of Zn to plaques is not simply due to increased protein deposition.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Cobre/química , Ferro/química , Neurópilo/química , Zinco/química , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Humanos , Metais/química , Camundongos , Camundongos Transgênicos , Mutação/genética , Placa Amiloide/metabolismo , Presenilina-1/genética , Raios X
17.
Nat Commun ; 7: 11007, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26975966

RESUMO

The inherent disadvantages of using granulocyte colony-stimulating factor (G-CSF) for hematopoietic stem cell (HSC) mobilization have driven efforts to identify alternate strategies based on single doses of small molecules. Here, we show targeting α9ß1/α4ß1 integrins with a single dose of a small molecule antagonist (BOP (N-(benzenesulfonyl)-L-prolyl-L-O-(1-pyrrolidinylcarbonyl)tyrosine)) rapidly mobilizes long-term multi-lineage reconstituting HSC. Synergistic engraftment augmentation is observed when BOP is co-administered with AMD3100. Impressively, HSC in equal volumes of peripheral blood (PB) mobilized with this combination effectively out-competes PB mobilized with G-CSF. The enhanced mobilization observed using BOP and AMD3100 is recapitulated in a humanized NODSCIDIL2Rγ(-/-) model, demonstrated by a significant increase in PB CD34(+) cells. Using a related fluorescent analogue of BOP (R-BC154), we show that this class of antagonists preferentially bind human and mouse HSC and progenitors via endogenously primed/activated α9ß1/α4ß1 within the endosteal niche. These results support using dual α9ß1/α4ß1 inhibitors as effective, rapid and transient mobilization agents with promising clinical applications.


Assuntos
Dipeptídeos/farmacologia , Mobilização de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Integrina alfa4beta1/antagonistas & inibidores , Integrinas/antagonistas & inibidores , Rodaminas/farmacologia , Sulfonas/farmacologia , Animais , Benzilaminas , Ciclamos , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Receptores CXCR4/antagonistas & inibidores
18.
Sci Rep ; 6: 20350, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26861174

RESUMO

We have developed an X-ray absorption near edge structure spectroscopy method using fluorescence detection for visualizing in vivo coordination environments of metals in biological specimens. This approach, which we term fluorescence imaging XANES (φXANES), allows us to spatially depict metal-protein associations in a native, hydrated state whilst avoiding intrinsic chemical damage from radiation. This method was validated using iron-challenged Caenorhabditis elegans to observe marked alterations in redox environment.


Assuntos
Caenorhabditis elegans/metabolismo , Complexos de Coordenação/química , Processamento de Imagem Assistida por Computador/métodos , Ferro/química , Metaloproteínas/química , Compostos Organometálicos/química , Espectroscopia por Absorção de Raios X/métodos , Animais , Modelos Moleculares , Oxirredução
19.
Metallomics ; 8(10): 1110-1121, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27481440

RESUMO

The biologically important metals such as zinc, copper and iron play key roles in retinal function, yet no study has mapped the spatio-temporal distribution of retinal biometals in healthy or diseased retina. We investigated a natural mouse model of retinal degeneration, the Cln6nclf mouse. As dysfunctional metabolism of biometals is observed in the brains of these animals and deregulated metal homeostasis has been linked to retinal degeneration, we focused on mapping the elemental distribution in the healthy and Cln6nclf mouse retina with age. Retinal and RPE elemental homeostasis was mapped in Cln6nclf and C57BL6/J mice from 1 to 8 months of age using X-ray Fluorescence Microscopy at the Australian Synchrotron. In the healthy retina, we detected a progressive loss of phosphorus in the outer nuclear layer and significant reduction in iron in the inner segments of the photoreceptors. Further investigation revealed a unique elemental signature for each retinal layer, with high areal concentrations of iron and sulfur in the photoreceptor segments and calcium, phosphorus, zinc and potassium enrichment predominantly in the nuclear layers. The analysis of retinae from Cln6nclf mice did not show significant temporal changes in elemental distributions compared to age matched controls, despite significant photoreceptor cell loss. Our data therefore demonstrates that retinal layers have unique elemental composition. Elemental distribution is, with few exceptions, stably maintained over time in healthy and Cln6nclf mouse retina, suggesting conservation of elemental distribution is critical for basic retinal function with age and is not modulated by processes underlying retinal degeneration.


Assuntos
Envelhecimento , Elementos Químicos , Retina/química , Animais , Modelos Animais de Doenças , Ferro/análise , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Fósforo/análise , Retina/crescimento & desenvolvimento , Retina/patologia , Retina/ultraestrutura , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Raios X
20.
Metallomics ; 7(5): 756-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25675086

RESUMO

Bromine is one of the most abundant and ubiquitous trace elements in the biosphere and until recently had not been shown to perform any essential biological function in animals. A recent study demonstrated that bromine is required as a cofactor for peroxidasin-catalysed formation of sulfilimine crosslinks in Drosophila. In addition, bromine dietary deficiency is lethal in Drosophila, whereas bromine replenishment restores viability. The aim of this study was to examine the distribution and speciation of bromine in mammalian tissues and fluids to provide further insights into the role and function of this element in biological systems. In this study we used X-ray fluorescence (XRF) imaging and inductively coupled plasma-mass spectrometry (ICP-MS) to examine the distribution of bromine in bovine ovarian tissue samples, follicular fluid and aortic serum, as well as human whole blood and serum and X-ray absorption spectroscopy (XAS) to identify the chemical species of bromine in a range of mammalian tissue (bovine, ovine, porcine and murine), whole blood and serum samples (bovine, ovine, porcine, murine and human), and marine samples (salmon (Salmo salar), kingfish (Seriola lalandi) and Scleractinian coral). Bromine was found to be widely distributed across all tissues and fluids examined. In the bovine ovary in particular it was more concentrated in the sub-endothelial regions of arterioles. Statistical comparison of the near-edge region of the X-ray absorption spectra with a library of bromine standards led to the conclusion that the major form of bromine in all samples analysed was bromide.


Assuntos
Bromo/análise , Bromo/sangue , Imagem Óptica , Espectroscopia por Absorção de Raios X , Animais , Antozoários , Bovinos , Feminino , Humanos , Camundongos , Imagem Óptica/métodos , Ovário/química , Salmão , Ovinos , Suínos , Espectrometria de Massas em Tandem/métodos , Oligoelementos/análise , Oligoelementos/sangue , Espectroscopia por Absorção de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA