Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 94(4)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31748388

RESUMO

The majority of antibodies induced by influenza neuraminidase (NA), like those against hemagglutinin (HA), are relatively specific to viruses isolated within a limited time window, as seen in serological studies and the analysis of many murine monoclonal antibodies (MAbs). We report three broadly reactive human MAbs targeting N1 NA. Two were isolated from a young adult vaccinated with trivalent influenza vaccine (TIV), which inhibited N1 NA from viruses isolated from humans over a period of a hundred years. The third antibody, isolated from a child with acute mild H7N9 infection, inhibited both group 1 N1 and group 2 N9 NAs. In addition, the antibodies cross-inhibited the N1 NAs of highly pathogenic avian H5N1 influenza viruses. These antibodies are protective in prophylaxis against seasonal H1N1 viruses in mice. This study demonstrates that human antibodies to N1 NA with exceptional cross-reactivity can be recalled by vaccination and highlights the importance of standardizing the NA antigen in seasonal vaccines to offer optimal protection.IMPORTANCE Antibodies to the influenza virus NA can provide protection against influenza disease. Analysis of human antibodies to NA lags behind that of antibodies to HA. We show that human monoclonal antibodies against NA induced by vaccination and infection can be very broadly reactive, with the ability to inhibit a wide spectrum of N1 NAs on viruses isolated between 1918 and 2018. This suggests that antibodies to NA may be a useful therapy and that the efficacy of influenza vaccines could be enhanced by ensuring the appropriate content of NA antigen.


Assuntos
Proteção Cruzada/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Neuraminidase/imunologia , Animais , Anticorpos Monoclonais/imunologia , Criança , Reações Cruzadas/imunologia , Cães , Feminino , Células HEK293 , Hemaglutininas/imunologia , Humanos , Imunização Passiva , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Subtipo H7N9 do Vírus da Influenza A/imunologia , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Neuraminidase/metabolismo , Infecções por Orthomyxoviridae/virologia , Vacinação , Adulto Jovem
2.
Cytokine ; 111: 389-397, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30463053

RESUMO

Streptococcuspneumoniae is a major human pathogen at the extremes of age. The elderly are particularly vulnerable to S.pneumoniae, the most common causative agent of bacterial pneumonia in this population. Despite the availability of vaccines and antibiotics, mortality rates associated with pneumococcal pneumonia in this age group remain high. In light of globally increasing life-expectancy, a better understanding of the patho-mechanisms of elderly pneumococcal pneumonia, including alterations in innate immune responses, is needed to develop improved therapies. In this study we aimed at investigating how increased susceptibility to pneumococcal infection relates to inflammation kinetics in the aged mouse pneumonia model by determining pulmonary cytokine and chemokine levels and comparing these parameters to those measured in young adult mice. Firstly, we detected overall higher pulmonary cytokine and chemokine levels in aged mice. However, upon induction of pneumococcal pneumonia in aged mice, delayed production of certain analytes, such as IFN-γ, MIG (CXCL9), IP-10 (CXCL10), MCP-1 (CCL2), TARC (CCL17) and MDC (CCL22) became apparent. In addition, aged mice were unable to control excess inflammatory responses: while young mice showed peak inflammatory responses at 20 h and subsequent resolution by 48 h post intranasal challenge, in aged mice increasing cytokine and chemokine levels were measured. These findings highlight the importance of considering multiple time points when delineating inflammatory responses to S.pneumoniae in an age-related context. Finally, correlation between pulmonary bacterial burden and cytokine or chemokine levels in young mice suggested that appropriately controlled inflammatory responses support the host to fight pneumococcal infection.


Assuntos
Quimiocinas/metabolismo , Citocinas/metabolismo , Infecções Pneumocócicas/metabolismo , Pneumonia Pneumocócica/metabolismo , Adulto , Idoso , Animais , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/metabolismo , Cinética , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Streptococcus pneumoniae/patogenicidade , Adulto Jovem
3.
Virulence ; 9(1): 231-247, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29099326

RESUMO

Pathogenesis of Staphylococcus aureus is increasingly recognized to be driven by powerful toxins. Staphylococcus aureus employs up to six pore-forming toxins to subvert the human host defense and to promote bacterial invasion: alpha-hemolysin that disrupts epithelial and endothelial barriers and five leukocidins that lyse phagocytes involved in bacterial clearance. Previously, we described two human monoclonal antibodies (mAbs), ASN-1 that neutralizes alpha-hemolysin and four leukocidins (LukSF-PV, LukED, HlgAB, HlgCB), and ASN-2 that inactivates the 5th leukocidin, LukGH. In this study we tested the individual and combined effects of ASN-1 and ASN-2 in multiple in vitro models employing relevant human target cells. We found that diverse S. aureus isolates with different genetic backgrounds (based on MLST- and spa-typing) and antibiotic sensitivity (both MRSA and MSSA) displayed greatly different cytotoxin expression patterns influenced by the type of growth medium used. Both mAbs were required to fully prevent the lysis of human neutrophils exposed to the mixture of recombinant cytotoxins or native toxins present in the culture supernatants of S. aureus isolates. Flow cytometry confirmed the protective effects of ASN-1 + ASN-2 (known as ASN100) on granulocytes, monocytes, NK-cells and T-lymphocytes. ASN-1 alone preserved the integrity of a 3D-primary culture of human tracheal/bronchial mucociliary epithelial tissue infected with S. aureus. We conclude that simultaneous inhibition of alpha-hemolysin and five leukocidins by ASN100 blocks cytolytic activity of S. aureus towards human target cells in vitro.


Assuntos
Anticorpos Monoclonais/imunologia , Toxinas Bacterianas/metabolismo , Citotoxinas/metabolismo , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Anticorpos Monoclonais/metabolismo , Toxinas Bacterianas/antagonistas & inibidores , Citotoxinas/antagonistas & inibidores , Proteínas Hemolisinas/antagonistas & inibidores , Proteínas Hemolisinas/metabolismo , Leucocidinas/antagonistas & inibidores , Leucocidinas/metabolismo , Neutrófilos/imunologia , Neutrófilos/microbiologia , Organoides/imunologia , Organoides/microbiologia , Organoides/patologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/química
4.
Virulence ; 9(1): 1521-1538, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30289054

RESUMO

Streptococcus pneumoniae isolates express up to three neuraminidases (sialidases), NanA, NanB and NanC, all of which cleave the terminal sialic acid of glycan-structures that decorate host cell surfaces. Most research has focused on the role of NanA with limited investigations evaluating the roles of all three neuraminidases in host-pathogen interactions. We generated two highly potent monoclonal antibodies (mAbs), one that blocks the enzymatic activity of NanA and one cross-neutralizing NanB and NanC. Total neuraminidase activity of clinical S. pneumoniae isolates could be inhibited by this mAb combination in enzymatic assays. To detect desialylation of cell surfaces by pneumococcal neuraminidases, primary human tracheal/bronchial mucocilial epithelial tissues were infected with S. pneumoniae and stained with peanut lectin. Simultaneous targeting of the neuraminidases was required to prevent desialylation, suggesting that inhibition of NanA alone is not sufficient to preserve terminal lung glycans. Importantly, we also found that all three neuraminidases increased the interaction of S. pneumoniae with human airway epithelial cells. Lectin-staining of lung tissues of mice pre-treated with mAbs before intranasal challenge with S. pneumoniae confirmed that both anti-NanA and anti-NanBC mAbs were required to effectively block desialylation of the respiratory epithelium in vivo. Despite this, no effect on survival, reduction in pulmonary bacterial load, or significant changes in cytokine responses were observed. This suggests that neuraminidases have no pivotal role in this murine pneumonia model that is induced by high bacterial challenge inocula and does not progress from colonization as it happens in the human host.


Assuntos
Anticorpos Monoclonais/imunologia , Proteínas de Bactérias/imunologia , Neuraminidase/imunologia , Pneumonia Pneumocócica/imunologia , Streptococcus pneumoniae/enzimologia , Células A549 , Animais , Anticorpos Antibacterianos/imunologia , Modelos Animais de Doenças , Células Epiteliais/microbiologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Polissacarídeos/metabolismo , Traqueia/citologia , Traqueia/microbiologia
5.
J Infect ; 74(5): 473-483, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28237625

RESUMO

OBJECTIVES: Staphylococcus aureus produces up to five bi-component leukocidins - LukSF-PV, gamma-hemolysins AB and CB, LukGH (LukAB) and LukED - to evade innate immunity by lysing phagocytic cells. Species specificity of these leukocidins limits the relevance of animal models, therefore we assessed their individual contribution using human neutrophils. METHODS: Human polymorphonuclear leukocytes (PMNs) were activated with stimuli relevant during bacterial infections and sensitivity to recombinant leukocidins was measured in cell-viability assays. Leukocidin receptor expression was quantified by flow cytometry. RESULTS: We observed greatly variable sensitivities of different PMN preparations towards LukGH. Activation of PMNs by lipopolysaccharide (LPS) or S. aureus culture supernatant (CS) lacking all leukocidins resulted in higher surface expression of CD11b, the LukGH receptor, and greatly enhanced the sensitivity towards LukGH, eliminating the variability observed with unstimulated cells. In contrast, CS induced a decrease in sensitivity of PMNs to the other four leukocidins and reduced surface staining for their cognate receptors (CXCR1, CXCR2, C5aR, C5L2). Delta-toxin and peptidoglycan mimicked the effect of CS. Moreover, IL-8, an important cytokine in neutrophil activation, also selectively increased LukGH sensitivity. Deletion of lukGH, but not other leukocidin genes, prevented PMN killing upon infection with USA300 CA-MRSA. CONCLUSION: Inflammatory signals enhance the susceptibility of human PMNs to lysis by LukGH rendering this toxin dominant among the S. aureus leukocidins in vitro.


Assuntos
Proteínas de Bactérias/imunologia , Leucocidinas/imunologia , Ativação de Neutrófilo/imunologia , Neutrófilos/imunologia , Antígeno CD11b/análise , Antígeno CD11b/imunologia , Antígeno CD11b/metabolismo , Humanos , Interleucina-8/análise , Interleucina-8/imunologia , Interleucina-8/metabolismo , Lipopolissacarídeos/imunologia , Modelos Biológicos , Neutrófilos/microbiologia , Staphylococcus aureus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA