Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nature ; 569(7757): 556-559, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30996349

RESUMO

The neurocranium of sarcopterygian fishes was originally divided into an anterior (ethmosphenoid) and posterior (otoccipital) portion by an intracranial joint, and underwent major changes in its overall geometry before fusing into a single unit in lungfishes and early tetrapods1. Although the pattern of these changes is well-documented, the developmental mechanisms that underpin variation in the form of the neurocranium and its associated soft tissues during the evolution of sarcopterygian fishes remain poorly understood. The coelacanth Latimeria is the only known living vertebrate that retains an intracranial joint2,3. Despite its importance for understanding neurocranial evolution, the development of the neurocranium of this ovoviviparous fish remains unknown. Here we investigate the ontogeny of the neurocranium and brain in Latimeria chalumnae using conventional and synchrotron X-ray micro-computed tomography as well as magnetic resonance imaging, performed on an extensive growth series for this species. We describe the neurocranium at the earliest developmental stage known for Latimeria, as well as the major changes that the neurocranium undergoes during ontogeny. Changes in the neurocranium are associated with an extreme reduction in the relative size of the brain along with an enlargement of the notochord. The development of the notochord appears to have a major effect on the surrounding cranial components, and might underpin the formation of the intracranial joint. Our results shed light on the interplay between the neurocranium and its adjacent soft tissues during development in Latimeria, and provide insights into the developmental mechanisms that are likely to have underpinned the evolution of neurocranial diversity in sarcopterygian fishes.


Assuntos
Evolução Biológica , Peixes/anatomia & histologia , Cabeça/anatomia & histologia , Crânio/anatomia & histologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/embriologia , Feminino , Peixes/embriologia , Cabeça/embriologia , Masculino , Ovoviviparidade , Crânio/embriologia , Síncrotrons , Microtomografia por Raio-X
3.
Nature ; 520(7548): 483-9, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25903630

RESUMO

The interrelationships between major living vertebrate, and even chordate, groups are now reasonably well resolved thanks to a large amount of generally congruent data derived from molecular sequences, anatomy and physiology. But fossils provide unexpected combinations of characters that help us to understand how the anatomy of modern groups was progressively shaped over millions of years. The dawn of vertebrates is documented by fossils that are preserved as either soft-tissue imprints, or minute skeletal fragments, and it is sometimes difficult for palaeontologists to tell which of them are reliable vertebrate remains and which merely reflect our idea of an ancestral vertebrate.


Assuntos
Cordados/anatomia & histologia , Cordados/classificação , Fósseis , Filogenia , Vertebrados/anatomia & histologia , Vertebrados/classificação , Animais
5.
Nature ; 476(7360): 324-7, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21850106

RESUMO

Most living vertebrates are jawed vertebrates (gnathostomes), and the living jawless vertebrates (cyclostomes), hagfishes and lampreys, provide scarce information about the profound reorganization of the vertebrate skull during the evolutionary origin of jaws. The extinct bony jawless vertebrates, or 'ostracoderms', are regarded as precursors of jawed vertebrates and provide insight into this formative episode in vertebrate evolution. Here, using synchrotron radiation X-ray tomography, we describe the cranial anatomy of galeaspids, a 435-370-million-year-old 'ostracoderm' group from China and Vietnam. The paired nasal sacs of galeaspids are located anterolaterally in the braincase, and the hypophyseal duct opens anteriorly towards the oral cavity. These three structures (the paired nasal sacs and the hypophyseal duct) were thus already independent of each other, like in gnathostomes and unlike in cyclostomes and osteostracans (another 'ostracoderm' group), and therefore have the condition that current developmental models regard as prerequisites for the development of jaws. This indicates that the reorganization of vertebrate cranial anatomy was not driven deterministically by the evolutionary origin of jaws but occurred stepwise, ultimately allowing the rostral growth of ectomesenchyme that now characterizes gnathostome head development.


Assuntos
Evolução Biológica , Peixes/anatomia & histologia , Peixes/classificação , Fósseis , Arcada Osseodentária/anatomia & histologia , Animais , China , Cabeça/anatomia & histologia , Vietnã
6.
Nature ; 466(7302): 100-4, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20596019

RESUMO

The evidence for macroscopic life during the Palaeoproterozoic era (2.5-1.6 Gyr ago) is controversial. Except for the nearly 2-Gyr-old coil-shaped fossil Grypania spiralis, which may have been eukaryotic, evidence for morphological and taxonomic biodiversification of macroorganisms only occurs towards the beginning of the Mesoproterozoic era (1.6-1.0 Gyr). Here we report the discovery of centimetre-sized structures from the 2.1-Gyr-old black shales of the Palaeoproterozoic Francevillian B Formation in Gabon, which we interpret as highly organized and spatially discrete populations of colonial organisms. The structures are up to 12 cm in size and have characteristic shapes, with a simple but distinct ground pattern of flexible sheets and, usually, a permeating radial fabric. Geochemical analyses suggest that the sediments were deposited under an oxygenated water column. Carbon and sulphur isotopic data indicate that the structures were distinct biogenic objects, fossilized by pyritization early in the formation of the rock. The growth patterns deduced from the fossil morphologies suggest that the organisms showed cell-to-cell signalling and coordinated responses, as is commonly associated with multicellular organization. The Gabon fossils, occurring after the 2.45-2.32-Gyr increase in atmospheric oxygen concentration, may be seen as ancient representatives of multicellular life, which expanded so rapidly 1.5 Gyr later, in the Cambrian explosion.


Assuntos
Ecossistema , Fósseis , Oxigênio/metabolismo , Bactérias/citologia , Eucariotos/citologia , Gabão , Sedimentos Geológicos/microbiologia , História Antiga
7.
Dev Biol ; 378(2): 194-9, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23501471

RESUMO

The vertebrate body plan is characterized by an increased complexity relative to that of all other chordates and large-scale gene amplifications have been associated with key morphological innovations leading to their remarkable evolutionary success. Here, we use compound full Hox clusters deletions to investigate how Hox genes duplications may have contributed to the emergence of vertebrate-specific innovations. We show that the combined deletion of HoxA and HoxB leads to an atavistic heart phenotype, suggesting that the ancestral HoxA/B cluster was co-opted to help in diversifying the complex organ in vertebrates. Other phenotypic effects observed seem to illustrate the resurgence of ancestral (plesiomorphic) features. This indicates that the duplications of Hox clusters were associated with the recruitment or formation of novel cis-regulatory controls, which were key to the evolution of many vertebrate features and hence to the evolutionary radiation of this group.


Assuntos
Duplicação Gênica , Proteínas de Homeodomínio/genética , Família Multigênica/genética , Vertebrados/genética , Animais , Padronização Corporal/genética , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/classificação , Hibridização In Situ , Camundongos , Mutação , Filogenia , Vertebrados/embriologia
10.
BMC Biol ; 11: 27, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23537390

RESUMO

BACKGROUND: The pituitary gland is formed by the juxtaposition of two tissues: neuroectoderm arising from the basal diencephalon, and oral epithelium, which invaginates towards the central nervous system from the roof of the mouth. The oral invagination that reaches the brain from the mouth is referred to as Rathke's pouch, with the tip forming the adenohypophysis and the stalk disappearing after the earliest stages of development. In tetrapods, formation of the cranial base establishes a definitive barrier between the pituitary and oral cavity; however, numerous extinct and extant vertebrate species retain an open buccohypophyseal canal in adulthood, a vestige of the stalk of Rathke's pouch. Little is currently known about the formation and function of this structure. Here we have investigated molecular mechanisms driving the formation of the buccohypophyseal canal and their evolutionary significance. RESULTS: We show that Rathke's pouch is located at a boundary region delineated by endoderm, neural crest-derived oral mesenchyme and the anterior limit of the notochord, using CD1, R26R-Sox17-Cre and R26R-Wnt1-Cre mouse lines. As revealed by synchrotron X-ray microtomography after iodine staining in mouse embryos, the pouch has a lobulated three-dimensional structure that embraces the descending diencephalon during pituitary formation. Polaris(fl/fl); Wnt1-Cre, Ofd1(-/-) and Kif3a(-/-) primary cilia mouse mutants have abnormal sonic hedgehog (Shh) signaling and all present with malformations of the anterior pituitary gland and midline structures of the anterior cranial base. Changes in the expressions of Shh downstream genes are confirmed in Gas1(-/-) mice. From an evolutionary perspective, persistence of the buccohypophyseal canal is a basal character for all vertebrates and its maintenance in several groups is related to a specific morphology of the midline that can be related to modulation in Shh signaling. CONCLUSION: These results provide insight into a poorly understood ancestral vertebrate structure. It appears that the opening of the buccohypophyseal canal depends upon Shh signaling and that modulation in this pathway most probably accounts for its persistence in phylogeny.


Assuntos
Proteínas Hedgehog/metabolismo , Boca/embriologia , Boca/metabolismo , Hipófise/embriologia , Hipófise/metabolismo , Transdução de Sinais , Vertebrados/embriologia , Animais , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Cílios/metabolismo , Ectoderma/embriologia , Ectoderma/metabolismo , Extinção Biológica , Peixes/embriologia , Fósseis , Proteínas Ligadas por GPI/deficiência , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Arcada Osseodentária/embriologia , Camundongos , Boca/anatomia & histologia , Mutação/genética , Filogenia , Hipófise/anatomia & histologia , Crânio/anatomia & histologia , Crânio/embriologia
11.
Nature ; 448(7153): 583-6, 2007 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-17671501

RESUMO

Extant jawed vertebrates, or gnathostomes, fall into two major monophyletic groups, namely chondrichthyans (cartilaginous fishes) and osteichthyans (bony fishes and tetrapods). Fossil representatives of the osteichthyan crown group are known from the latest Silurian period, 418 million years (Myr) ago, to the present. By contrast, stem chondrichthyans and stem osteichthyans are still largely unknown. Two extinct Palaeozoic groups, the acanthodians and placoderms, may fall into these stem groups or the common stem group of gnathostomes, but their relationships and monophyletic status are both debated. Here we report unambiguous evidence for osteichthyan characters in jaw bones referred to the late Silurian (423-416-Myr-old) fishes Andreolepis hedei and Lophosteus superbus, long known from isolated bone fragments, scales and teeth, and whose affinities to, or within, osteichthyans have been debated. The bones are a characteristic osteichthyan maxillary and dentary, but the organization of the tooth-like denticles they bear differs from the large, conical teeth of crown-group osteichthyans, indicating that they can be assigned to the stem group. Andreolepis and Lophosteus are thus not only the oldest but also the most phylogenetically basal securely identified osteichthyans known so far.


Assuntos
Peixes/anatomia & histologia , Peixes/classificação , Arcada Osseodentária/anatomia & histologia , Filogenia , Dente/anatomia & histologia , Animais , Fósseis , História Antiga , Fatores de Tempo
12.
Proc Natl Acad Sci U S A ; 107(25): 11441-6, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20534536

RESUMO

The origin of active predation in vertebrates is associated with the rise of three major, uniquely derived developmental characteristics of the head: (i) migratory cranial neural crest cells (CNCCs) giving rise to most skeletal skull elements; (ii) expression of Dlx genes by CNCCs in the Hox-free first pharyngeal arch (PA1); and (iii) muscularization of PA1 derivatives. Here we show that these three innovations are tightly linked. Expression of Dlx genes by CNCCs is not only necessary for head skeletogenesis, but also for the determination, differentiation, and patterning of cephalic myogenic mesoderm leading to masticatory muscle formation. In particular, inactivation of Dlx5 and Dlx6 in the mouse results in loss of jaw muscles. As Dlx5/6 are not expressed by the myogenic mesoderm, our findings imply an instructive role for Dlx5/6-positive CNCCs in muscle formation. The defect in muscularization does not result from the loss of mandibular identity observed in Dlx5/6(-/-) mice because masticatory muscles are still present in EdnRA(-/-) mutants, which display a similar jaw transformation. The genesis of jaws and their muscularization should therefore be seen as an integrated Dlx-dependent developmental process at the origin of the vertebrate head. The role of Dlx genes in defining gnathostome jaw identity could, therefore, be secondary to a more primitive function in the genesis of the oral skeletomuscular system.


Assuntos
Proteínas de Homeodomínio/genética , Arcada Osseodentária/embriologia , Crista Neural/citologia , Animais , Diferenciação Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Arcada Osseodentária/fisiologia , Masculino , Mesoderma/metabolismo , Camundongos , Modelos Biológicos , Desenvolvimento Muscular , Crânio/embriologia , Crânio/fisiologia
13.
Nat Commun ; 14(1): 6652, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907522

RESUMO

Lampreys, one of two living lineages of jawless vertebrates, are always intriguing for their feeding behavior via the toothed suctorial disc and life cycle comprising the ammocoete, metamorphic, and adult stages. However, they left a meager fossil record, and their evolutionary history remains elusive. Here we report two superbly preserved large lampreys from the Middle-Late Jurassic Yanliao Biota of North China and update the interpretations of the evolution of the feeding apparatus, the life cycle, and the historic biogeography of the group. These fossil lampreys' extensively toothed feeding apparatus differs radically from that of their Paleozoic kin but surprisingly resembles the Southern Hemisphere pouched lamprey, which foreshadows an ancestral flesh-eating habit for modern lampreys. Based on the revised petromyzontiform timetree, we argued that modern lampreys' three-staged life cycle might not be established until the Jurassic when they evolved enhanced feeding structures, increased body size and encountered more penetrable host groups. Our study also places modern lampreys' origin in the Southern Hemisphere of the Late Cretaceous, followed by an early Cenozoic anti-tropical disjunction in distribution, hence challenging the conventional wisdom of their biogeographical pattern arising from a post-Cretaceous origin in the Northern Hemisphere or the Pangean fragmentation in the Early Mesozoic.


Assuntos
Lampreias , Comportamento Predatório , Animais , Estágios do Ciclo de Vida , Vertebrados , Fósseis , Filogenia
14.
Nature ; 440(7088): 1183-5, 2006 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-16641994

RESUMO

So far, the Palaeozoic fossil jawless vertebrates have not provided any direct evidence for the organization of the gills, apart from vague impressions--supposedly left by gill filaments--on the bony surface of the gill chamber in certain armoured forms or 'ostracoderms' (for example, osteostracans and heterostracans). The latter are currently regarded as more closely related to the living jawed vertebrates (crown gnathostomes) than to the living jawless vertebrates (hagfish and lampreys, or cyclostomes). Here we report the first direct evidence for the position of the gill filaments--possibly supported by gill rays--enclosed by gill pouches in a 370-million year (Myr)-old jawless vertebrate, Endeiolepis, from the Late Devonian fossil fish site of Miguasha, Quebec, Canada. This extinct jawless fish has much the same gill organization as living lampreys, although it possesses an unusually large number of gill pouches--a condition unlike that in any extant vertebrates and that raises questions about gill development. Endeiolepis is currently regarded as a close relative of anaspids, a group of 410-430-Myr-old 'ostracoderms'. Assuming that current vertebrate phylogeny is correct, this discovery demonstrates that pouches enclosing the gills are primitive for vertebrates, but have been subsequently lost in jawed vertebrates.


Assuntos
Evolução Biológica , Fósseis , Brânquias/anatomia & histologia , Arcada Osseodentária , Lampreias/anatomia & histologia , Vertebrados/anatomia & histologia , Vertebrados/classificação , Animais , História Antiga , Filogenia , Quebeque , Fatores de Tempo
15.
Proc Natl Acad Sci U S A ; 106(13): 5224-8, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19273859

RESUMO

Living cartilaginous fishes, or chondrichthyans, include numerous elasmobranch (sharks and rays) species but only few chimaeroid (ratfish) species. The early history of chimaeroids, or holocephalans, and the modalities of their divergence from elasmobranchs are much debated. During Carboniferous times, 358-300 million years (Myr) ago, they underwent a remarkable evolutionary radiation, with some odd and poorly understood forms, including the enigmatic iniopterygians that were known until now from poorly informative flattened impressions. Here, we report iniopterygian skulls found preserved in 3 dimensions in approximately 300-Myr-old concretions from Oklahoma and Kansas. The study was performed by using conventional X-ray microtomography (muCT), as well as absorption-based synchrotron microtomography (SR-muCT) [Tafforeau P, et al. (2006) Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl Phys A 83:95-202] and a new holotomographic approach [Guigay P, Langer M, Boistel R, Cloetens P (2007) Mixed transfer function and transport of intensity approach for phase retrieval in the Fresnel region. Opt Lett 32:1617-1619], which revealed their peculiar anatomy. Iniopterygians also share unique characters with living chimaeroids, suggesting that the key chimaeroid skull features were already established 300 Myr ago. Moreover, SR-muCT of an articulated skull revealed a strikingly brain-shaped structure inside the endocranial cavity, which seems to be an exceptional case of soft-tissue mineralization of the brain, presumably as a result of microbially induced postmortem phosphatization. This was imaged with exceptional accuracy by using holotomography, which demonstrates its great potential to image preserved soft parts in dense fossils.


Assuntos
Encéfalo/anatomia & histologia , Peixes/anatomia & histologia , Fósseis , Crânio/anatomia & histologia , Microtomografia por Raio-X/métodos , Animais , Kansas , Oklahoma , Filogenia
16.
Evol Dev ; 13(6): 523-32, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-23016936

RESUMO

Traditional hypotheses posit that teeth evolved from dermal scales, through the expansion of odontogenetically competent ectoderm into the mouth of jawless vertebrates. The discovery of tooth-like scales inside thelodonts, an extinct group of jawless vertebrates, led to the alternative hypothesis that teeth evolved from endodermal derivatives and that there exists a fundamental developmental and phylogenetic distinction between oral/pharyngeal and external odontodes. We set out a test of this latter hypothesis, examining the development of scales of the thelodont Loganellia scotica using synchrotron radiation X-ray tomographic microscopy (SRXTM). We reveal that the internal scales are organized into fused patches and rows, a key distinction from the discrete dermal scales. The pattern of growth of oral scale patches is polarized, but not along a particular vector, whereas pharyngeal scale rows grew along a vector. Our test of the phylogenetic distribution of oral and pharyngeal scales and teeth in vertebrates indicates that odontodes are first expressed in an external position. Internal scales, where present, are always located near to external orifices; the sequential development of pharyngeal scales in Loganellia is peculiar among thelodonts and other stem gnathostomes. It represents a convergence on, rather than the establishment of, the developmental pattern underpinning tooth replacement in jawed vertebrates. The available evidence suggests that internal odontodes evolved through the expansion of odontogenic competence from external to internal epithelia.


Assuntos
Evolução Biológica , Dente , Vertebrados/anatomia & histologia , Animais , Ectoderma/anatomia & histologia , Extinção Biológica , Fósseis , Filogenia , Vertebrados/genética
18.
Nature ; 427(6973): 412-3, 2004 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-14749820

RESUMO

Several discoveries of Late Devonian tetrapods (limbed vertebrates) have been made during the past two decades, but each has been confined to one locality. Here we describe a tetrapod jaw of about 365 million years (Myr) old from the Famennian of Belgium, which is the first from western continental Europe. The jaw closely resembles that of Ichthyostega, a Famennian tetrapod hitherto known only from Greenland. The environment of this fossil provides information about the conditions that prevailed just before the virtual disappearance of tetrapods from the fossil record for 20 Myr.


Assuntos
Fósseis , Arcada Osseodentária/anatomia & histologia , Vertebrados/anatomia & histologia , Animais , Bélgica , Geografia , Groenlândia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA