Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Angew Chem Int Ed Engl ; : e202415735, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223092

RESUMO

Enrichment of photosensitizers (PSs) on cancer cell membranes via bioorthogonal reactions is considered to be a very promising therapeutic modality. However, azide-modified sugars-based metabolic labeling processes usually lack targeting and the labeling speed is relatively slow. Moreover, it has been rarely reported that membrane-anchoring pure type-I PSs can induce cancer cell pyroptosis. Here, we report an alkaline phosphatase (ALP) and cholecystokinin-2 receptor (CCK2R) dual-targeting peptide named DBCO-pYCCK6, which can selectively and rapidly self-assemble on cancer cell membrane, and then bioorthogonal enrich type-I aggregation-induced emission luminogens (AIEgen) PSs (SAIE-N3) on the cell membrane. Upon light irradiation, the membrane-anchoring SAIE-N3 could effectively generate type-I reactive oxygen species (ROS) to induce gasdermin E (GSDME)-mediated pyroptosis. In vivo experiments demonstrated that the bioorthogonal combination strategy of peptide and AIEgen PSs could significantly inhibit tumor growth, which is accompanied by CD8+ cytotoxic T cell infiltration. This work provides a novel self-assembly peptide-mediated bioorthogonal reaction strategy to bridge the supramolecular self-assembly and AIE field through strain-promoted azide-alkyne cycloaddition (SPAAC) and elucidates that pure type-I membrane-anchoring PSs can be used for cancer therapy via GSDME-mediated pyroptosis.

2.
Angew Chem Int Ed Engl ; 61(24): e202116174, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35030286

RESUMO

Persistent luminescence without excitation light and tissue autofluorescence interference holds great promise for biological applications, but is limited by available materials with long-wavelength emission and excellent clinical potential. Here, we report that porphyrin derivatives can emit near-infrared persistent luminescence over 60 min after cessation of excitation light or on interaction with peroxynitrite. A plausible mechanism of the successive oxidation of vinylene bonds was demonstrated. A supramolecular probe with a ß-sheet structure was constructed to enhance the tumor targeting ability and the photoacoustic and persistent luminescence signals. Such probes featuring light-triggered function transformation from photoacoustic imaging to persistent luminescence imaging permit advanced image-guided cancer surgery. Furthermore, peroxynitrite-activated persistent luminescence of the supramolecular probe also enables rapid and precise screening of immunogenic cell death drugs.


Assuntos
Nanopartículas , Neoplasias , Porfirinas , Humanos , Luminescência , Nanopartículas/química , Ácido Peroxinitroso
3.
Angew Chem Int Ed Engl ; 60(52): 26994-27004, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34643312

RESUMO

Lysosome-relevant cell death induced by lysosomal membrane permeabilization (LMP) has recently attracted increasing attention. However, nearly no studies show that currently available LMP inducers can evoke immunogenic cell death (ICD) or convert immunologically cold tumors to hot. Herein, we report a LMP inducer named TPE-Py-pYK(TPP)pY, which can respond to alkaline phosphatase (ALP), leading to formation of nanoassembies along with fluorescence and singlet oxygen turn-on. TPE-Py-pYK(TPP)pY tends to accumulate in ALP-overexpressed cancer cell lysosomes as well as induce LMP and rupture of lysosomal membranes to massively evoke ICD. Such LMP-induced ICD effectively converts immunologically cold tumors to hot as evidenced by abundant CD8+ and CD4+ T cells infiltration into the cold tumors. Exposure of ALP-catalyzed nanoassemblies in cancer cell lysosomes to light further intensifies the processes of LMP, ICD and cold-to-hot tumor conversion. This work thus builds a new bridge between lysosome-relevant cell death and cancer immunotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Morte Celular Imunogênica/efeitos dos fármacos , Lisossomos/metabolismo , Neoplasias/tratamento farmacológico , Organofosfatos/uso terapêutico , Fosfatase Alcalina/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/efeitos da radiação , Linhagem Celular Tumoral , Desenho de Fármacos , Células HEK293 , Humanos , Radical Hidroxila/metabolismo , Membranas Intracelulares/metabolismo , Luz , Lisossomos/enzimologia , Camundongos , Organofosfatos/síntese química , Organofosfatos/metabolismo , Organofosfatos/efeitos da radiação , Permeabilidade/efeitos dos fármacos
4.
Faraday Discuss ; 196: 377-393, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27886315

RESUMO

The exploration of advanced fluorescent probes that can detect divalent copper (Cu2+) in aqueous environments and even in live organisms is particularly valuable for understanding the occurrence and development of Cu2+-related diseases. In this work, we report the design and synthesis of an aggregation-induced emission luminogen (AIEgen)-based probe (TPE-Py-EEGTIGYG) by integrating an AIEgen, TPE-Py, with a peptide, EEGTIGYG, which can selectively detect Cu2+ in both aqueous solution and live cells. Peptide EEGTIGYG has dual functionality in the probe design, namely improving water solubility and providing specific cell membrane-binding ability. TPE-Py-EEGTIGYG can self-assemble into nanoaggregates at high concentration in aqueous solution (e.g., 25 µM), which possess large fluorescence output due to the restriction of intramolecular rotation of the phenyl rings on TPE-Py. The fluorescence of the TPE-Py-EEGTIGYG nanoaggregates can be significantly quenched by Cu2+ but not by other metal ions, achieving the selective detection of Cu2+ in aqueous media. Furthermore, TPE-Py-EEGTIGYG can exist as a molecular species and is very weakly fluorescent in dilute aqueous solution (e.g., 5 µM), but can however largely switch on its fluorescence upon specifically anchoring onto the cell membrane. The emissive probes on the cell membrane can be used for the detection of Cu2+ ions that move in and out of cells with a fluorescence "turn-off" mode.


Assuntos
Membrana Celular/química , Cobre/análise , Fluorescência , Corantes Fluorescentes/química , Peptídeos/química , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Íons/análise , Estrutura Molecular , Células Tumorais Cultivadas
5.
Anal Chem ; 88(14): 7318-23, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27345959

RESUMO

Fluorescence probes have been widely applied for the detection of important analytes with high sensitivity and specificity. However, they cannot be directly applied for the detection in samples with autofluorescence such as blood. Herein, we demonstrated a simple but effective method of surface-induced self-assembly/hydrogelation for fluorescence detection of an enzyme in biological fluids including blood and cell lysates. The method utilizes an attracting glass surface to induce self-assembly of an enzyme-generating fluorescent probe. After removing the upper solution, the fluorescence turn-on at the glass surface can therefore be used for the detection of enzyme activity. By judging the thickness and color depth of hydrogels at the surface of the glass plates, we could also estimate the enzyme activity by naked eyes. Our study not only expands the application of molecular self-assembly but also provides a useful method that can be applied for direct detection of enzyme activity in complex biological samples such as blood and cell lysates.


Assuntos
Enzimas/sangue , Corantes Fluorescentes/química , Hidrogéis/química , Espectrometria de Fluorescência , Fosfatase Alcalina/sangue , Animais , Linhagem Celular , Humanos , Camundongos , Nitrocompostos/química , Oxidiazóis/química , Peptídeos/síntese química , Peptídeos/química
6.
Anal Chem ; 88(7): 3872-8, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26948051

RESUMO

Fluorescent light-up probes with aggregation-induced emission (AIE) characteristics have recently attracted great research interest due to their intelligent fluorescence activation mechanism and excellent photobleaching resistance. In this work, we report a new, simple, and generic strategy to design and prepare highly sensitive AIE fluorescent light-up bioprobe through facile incorporation of a self-assembling peptide sequence GFFY between the recognition element and the AIE luminogen (AIEgen). After the bioprobes respond to the targets, the peptide GFFY is capable of inducing the ordered self-assembly of AIEgens, yielding close and tight intermolecular steric interactions to restrict the intramolecular motions of AIEgens for excellent signal output. Using two proof-of-concepts, we have demonstrated that self-assembling peptide-incorporating AIE light-up probes show much higher sensitivity in sensing the corresponding targets in both solutions and cancer cells as compared to those without GFFY induced self-assembly. Taking the probe TPE-GFFYK(DVEDEE-Ac), for example, a detection limit as low as 0.54 pM can be achieved for TPE-GFFYK(DVEDEE-Ac) in caspase-3 detection, which is much lower than that of TPE-K(DVED-Ac) (3.50 pM). This study may inspire new insights into the design of advanced fluorescent molecular probes.


Assuntos
Corantes Fluorescentes/síntese química , Luz , Peptídeos/química , Animais , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Fluorescência , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Células HeLa , Humanos , Camundongos , Estrutura Molecular , Células NIH 3T3 , Peptídeos/síntese química , Relação Estrutura-Atividade
7.
Anal Chem ; 88(1): 740-5, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26630460

RESUMO

We report in this study on optimized ratiometric fluorescent probes by peptide self-assembly. The resulting self-assembled nanoprobes show extraordinary stability in aqueous solutions and extremely low background fluorescence in buffer solutions. Our optimized probes with much bigger ratiometric fluorescence ratios also show an enhanced cellular uptake, lower background noise, and much brighter fluorescence signal in the cell experiment. Our study provides a versatile and very useful strategy to design and produce fluorescent probes with better performance.


Assuntos
Corantes Fluorescentes/química , Peptídeos/química , Peptídeos/síntese química , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Hidrazinas/análise , Sulfeto de Hidrogênio/análise , Microscopia de Fluorescência , Estrutura Molecular
8.
Biomater Sci ; 11(6): 2221-2229, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36748329

RESUMO

Peptide-aggregation-induced emission (AIE) luminogen (AIEgen) conjugates are widely used in the bioimaging field for their good resistance to photobleaching, red and near-infrared light emission, good biocompatibility, etc. However, their peptides are mainly negatively charged and the positively charged peptide-AIEgen conjugates are rarely used in in vivo imaging due to their high non-specific interaction with protein to cause "false-positive" results and their potential risk of triggering hemolysis. Herein, we introduce a black hole quencher 3 (BHQ3) to RVRRGFF-AIE (FA) to build a "turn-on" probe, named BHQ3-RVRRGFF-AIE (BFA). Compared with FA, BFA has advantages in the anti-interference ability for different proteins and many solution environments. But, both BFA and FA have high risks of inducing hemolysis, which restricts their further application. Through co-assembly with poly-γ-glutamic acid (γ-PGA), molecular probes BFA and FA are formed into PGA-BFA and PGA-FA nanoparticles with high biocompatibility and suppressed phototoxicity. Cell studies show that PGA-BFA can discriminate cancer cells with high furin expression from low furin-expressed cancer cells and normal cells. In vivo studies show that PGA-BFA can light up tiny tumors in the abdominal cavity with a better tumor-to-intestine ratio (3.14) than that of PGA-FA (1.47), which is helpful for the accurate excision of tiny tumors. This study will advance the development of constructing good biosafety probes with a high signal-to-noise ratio for fluorescence image-guided cancer surgery.


Assuntos
Furina , Neoplasias , Humanos , Hemólise , Fluorescência , Peptídeos/química , Neoplasias/diagnóstico por imagem , Corantes Fluorescentes/química
9.
Small Methods ; 7(5): e2201409, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36802205

RESUMO

Adjuvants play an important role in enhancing vaccine-induced immune protection. Adequate cellular uptake, robust lysosomal escape, and subsequent antigen cross-presentation are critical steps for vaccine adjuvants to effectively elicit cellular immunity. Here, a fluorinated supramolecular strategy to generate a series of peptide adjuvants by using arginine (R) and fluorinated diphenylalanine peptide (DP) is adopted. It is found that the self-assembly ability and antigen-binding affinity of these adjuvants increase with the number of fluorine (F) and can be regulated by R. By comparison, 4RDP(F5) shows the strongest binding affinity with model antigen ovalbumin (OVA) and the best performance in dendritic cells maturation and antigen's lysosomal escape, which contributes to the subsequent antigen cross-presentation. As a consequence, 4RDP(F5)-OVA nanovaccine generates a strong cellular immunity in a prophylactic OVA-expressing EG7-OVA lymphoma model, leading to long-term immune memory for resisting tumor challenge. What's more, 4RDP(F5)-OVA nanovaccine in combination with anti-programmed cell death ligand-1 (anti-PD-L1) checkpoint blockade could effectively elicit anti-tumor immune responses and inhibit tumor growth in a therapeutic EG7-OVA lymphoma model. Overall, this study demonstrates the simplicity and effectiveness of fluorinated supramolecular strategies for constructing adjuvants and might provide an attractive vaccine adjuvant candidate for cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Anticâncer/química , Vacinas Anticâncer/farmacologia , Apresentação de Antígeno , Adjuvantes Imunológicos , Antígenos , Neoplasias/terapia , Ovalbumina/química
10.
Front Chem ; 10: 910341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646829

RESUMO

Extracellular vesicles (EVs) are a class of lipid membrane-bound vesicles released by various cells and mediate cell-to-cell communication. By reason of their high physiochemical stability and biocompatibility, EVs are considered as novel drug delivery system. An increasing number of studies have indicated that EVs can be modified to enhance their loading efficiency, targeting ability and therapeutic capabilities for cancer therapy. Compared with the tedious process of gene engineering approaches, direct modification of EVs is easier, faster and versatile. This mini review will summarize the prevailing approaches for direct modification of EVs. Additionally, the potential applications of modified EVs in cancer therapy are also discussed, which will help readers gain a better understanding of the technologies and applications in this field.

11.
Adv Sci (Weinh) ; 9(10): e2104885, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35132824

RESUMO

Immunogenic cell death (ICD) through apoptosis or necroptosis is widely adopted to improve the therapeutic effect in cancer treatment by triggering a specific antitumor immunity. However, the tumor resistance to apoptosis/necroptosis seriously impedes the therapeutic effect. Recently, ferroptosis featured with excessive lipid peroxidation is demonstrated capable of bypassing the apoptosis/necroptosis resistance to kill cancer cells. To date, numerous efficient ferroptosis inducers are developed and successfully utilized for sensitizing cancer cells to ferroptosis. Unfortunately, these inducers can hardly generate adequate immunogenicity during induction of ferroptotic cancer cell death, which distinctly attenuates the efficacy of triggering antitumor immune response, therefore leads to unsatisfactory therapeutic effect. Herein, a novel high-performance photothermal nanoparticle (TPA-NDTA NP) is designed by exploiting energy via excited-state intramolecular motion and employed for immensely assisting ferroptosis inducer to evoke highly efficient ICD through ferroptosis pathway. Tumor models with poor immunogenicity are used to demonstrate the tremendously enhanced therapeutic effect endowed by highly enhanced immunogenic ferroptosis in vitro and in vivo by virtue of the NPs. This study sheds new light on a previously unrecognized facet of boosting the immunogenicity of ferroptosis for achieving satisfactory therapeutic effect in cancer therapy.


Assuntos
Ferroptose , Hipertermia Induzida , Neoplasias , Humanos , Morte Celular Imunogênica , Necroptose , Neoplasias/terapia
12.
Biomater Sci ; 9(2): 437-442, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33146160

RESUMO

Herein, we report a new bioprobe with aggregation-induced emission (AIE) characteristics by conjugation of a far-red/near-infrared emissive AIE luminogen and two polymyxinB peptides. Due to the strong binding effect between polymyxin B and the lipopolysaccharide in the cell wall of Gram-negative bacteria, the bioprobe can selectively visualize Gram-negative bacteria and effectively kill them via photodynamic treatment.


Assuntos
Técnicas Biossensoriais , Bactérias Gram-Negativas , Peptídeos
13.
Biomater Sci ; 8(5): 1431-1441, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-31960005

RESUMO

Novel Janus nanoparticles (J-NPs) are developed by using single iron oxide (Fe3O4) nanoparticles as the core and hydrophobic/hydrophilic polymeric brushes as the cloak. Because of the superparamagnetism and asymmetric functionality of J-NPs, they are used as drug carriers and therapeutic agents for cancer chemotherapy and magnetic hyperthermia with a magnetic resonance imaging (MRI) guide. The asymmetric functionality is constituted of hydrophobic polymethyl methacrylate (PMMA) brushes and hydrophilic polyacrylic acid (PAA) brushes, which are 'grafting to' or 'grafting from' Fe3O4 nanoparticles via activators regenerated by electron transfer atom transfer radical polymerization. The terminal chains of PMMA and PAA brushes are coordinated with Fe3O4 nanoparticles, so PMMA/Fe3O4/PAA J-NPs possess structural stability in solvents. Because of the brush-structure, PMMA/Fe3O4/PAA J-NPs show high encapsulation efficiency (89.75 ± 2.35%) and loading capacity (8.95 ± 0.26%). Under the alternating magnetic field (AMF), drug-loaded J-NPs achieve the highest cell proliferation-inhibition ratio in the cell proliferation test in vitro and the tumor growth inhibition test in vivo compared to single chemotherapy or magnetic hyperthermia. Meanwhile, J-NPs show good T2 imaging.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/terapia , Hipertermia Induzida , Nanopartículas de Magnetita/química , Polímeros/química , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Neoplasias da Mama/diagnóstico por imagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Interações Hidrofóbicas e Hidrofílicas , Campos Magnéticos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Células NIH 3T3 , Tamanho da Partícula , Polímeros/síntese química , Propriedades de Superfície
14.
Biomed Res Int ; 2020: 6265701, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714982

RESUMO

Numerous studies have reported that autophagy plays an important role in chronic wound healing, and enhancement of autophagic activity impairs cutaneous wound healing. The autophagy inhibitor Bafilomycin A1 (Baf A1) inhibits autophagy by preventing the formation of autophagosomes. This study aimed at elucidating the effect of Bafilomycin A1 on chronic refractory wound healing in diabetic mice. A total of 40 diabetic (db/db) mice and 20 nondiabetic (db/m) mice were used in this study. Full-thickness skin defects were generated in the db/db mice models, which were then divided into the following two groups: the nontreated (db/db group) and Baf A1-treated groups (Baf A1 group). The same skin defects were generated in db/m mice (db/m group) to serve as a control. We demonstrated that Baf A1 treatment significantly accelerated wound healing in db/db mice and exerted good healing effects. Moreover, Baf A1 inhibited autophagy in the newly generated epidermis and had minor effects on metabolism in db/db mice. PCNA expression, as detected by immunohistochemistry, and collagen thickness, as detected by Masson's trichrome staining on the 14th day, were higher in the db/m and Baf A1 groups than in the db/db group. In addition, the expression of the proinflammatory cytokine TNF-α in the db/m and Baf A1 groups increased significantly on day 6, and the expression of the anti-inflammatory cytokine IL-10 also increased significantly on day 9. However, there were no significant changes in the expression levels of TNF-α and IL-10 in the db/db group. Therefore, Baf A1 may accelerate diabetic chronic refractory wound healing by promoting cell proliferation, collagen production, and regulating the inflammatory balance.


Assuntos
Diabetes Mellitus Experimental/patologia , Macrolídeos/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Diabetes Mellitus Experimental/metabolismo , Inflamação/patologia , Interleucina-10/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/metabolismo
15.
Chem Asian J ; 14(6): 871-876, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30548916

RESUMO

Despite of the enthusiastic research in aggregation-induced emission luminogens (AIEgens) in recent years, the ones that can be smoothly used for sophisticated biomedical applications such as in vivo bioimaging of pulmonary metastatic tumors during surgery are still limited. Herein, we report the design and synthesis of a new series of far-red/near-infrared (FR/NIR) fluorescent AIEgens that consist of methoxy-substituted tetraphenylethene (TPE) as the electron-donating moiety, (1,3-dimethyl)barbituric acid as the electron-withdrawing moiety, and different π-bridge units. As compared to benzene or 3,4-ethylenedioxythiophene, using thiophene as the π-conjugation unit between the donor and acceptor results in a relatively higher absolute fluorescence quantum yield (14.5 %) in water when formulating the corresponding AIEgens into nanoparticles (AIE dots) with an amphiphilic co-polymer as the doping matrix. The highly FR/NIR-emissive thiophene-based AIE dots are demonstrated to be potent for intraoperative detection of pulmonary metastatic tumors, particularly the micro-sized ones, with excellent signal-to-background ratio.


Assuntos
Barbitúricos/química , Corantes Fluorescentes/química , Neoplasias Pulmonares/diagnóstico , Animais , Linhagem Celular Tumoral , Difusão Dinâmica da Luz , Corantes Fluorescentes/síntese química , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Imagem Óptica , Teoria Quântica , Espectrometria de Fluorescência , Estilbenos/química , Transplante Heterólogo
16.
J Mater Chem B ; 6(17): 2566-2573, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254475

RESUMO

Both fluorescence and photoactivity activatable probes are particularly valuable for cancer theranostics as they allow for sensitive fluorescence diagnosis and on-demand photodynamic therapy (PDT) against targeted cancer cells at the same time, which undoubtedly promote the diagnostic accuracy and reduce the side effects on normal tissues/cells. Here, we show that enzyme-instructed self-assembly (EISA) is an ideal strategy to develop a both fluorescence and reactive oxygen species (ROS) generation capability activatable probe with aggregation-induced emission (AIE) signature. As a proof-of-concept, we design and synthesize a precursor TPE-Py-FpYGpYGpY that consists of an AIE luminogen (TPE-Py) and a short peptide with three tyrosine phosphates (pY), which permits selective fluorescence visualization and PDT of alkaline phosphatase (ALP)-overexpressed cancer cells. TPE-Py-FpYGpYGpY has good aqueous solubility thanks to the hydrophilic phosphotyrosine residues and hence leads to weak fluorescence and negligible ROS generation ability. After ALP enzymatic dephosphorylation of the precursors, however, self-assembly of ALP-catalysed products occurs and the resultant nanostructures are activated to be highly emissive and efficiently produce ROS. Cellular studies reveal that TPE-Py-FpYGpYGpY is capable of differentiating cancer cells and normal cells, specifically pinpointing and suppressing ALP-overexpressed cancer cells. This study may inspire new insights into the design of advanced activatable molecular probes.

17.
Adv Mater ; 30(18): e1706831, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29504163

RESUMO

Bacterial infection is one of the most serious physiological conditions threatening human health. There is an increasing demand for more effective bacterial diagnosis and treatment through noninvasive theranostic approaches. Herein, a new strategy is reported to achieve in vivo metabolic labeling of bacteria through the use of MIL-100 (Fe) nanoparticles (NPs) as the nanocarrier for precise delivery of 3-azido-d-alanine (d-AzAla). After intravenous injection, MIL-100 (Fe) NPs can accumulate preferentially and degrade rapidly within the high H2 O2 inflammatory environment, releasing d-AzAla in the process. d-AzAla is selectively integrated into the cell walls of bacteria, which is confirmed by fluorescence signals from clickable DBCO-Cy5. Ultrasmall photosensitizer NPs with aggregation-induced emission characteristics are subsequently designed to react with the modified bacteria through in vivo click chemistry. Through photodynamic therapy, the amount of bacteria on the infected tissue can be significantly reduced. Overall, this study demonstrates the advantages of metal-organic-framework-assisted bacteria metabolic labeling strategy for precise bacterial detection and therapy guided by fluorescence imaging.


Assuntos
Estruturas Metalorgânicas/química , Antibacterianos , Bactérias , Nanopartículas , Nanomedicina Teranóstica
18.
Nanoscale ; 10(9): 4179-4188, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442103

RESUMO

Targeted delivery and controlled release of nitric oxide (NO) locoregionally are in high demand and challenging in cancer treatment. Herein, we report an example of galactose receptor targeted, pH-responsive and self-assembled nanoparticle-based delivery of the NO prodrug O2-(2,4-dinitrophenyl) 1-[4-(propargyloxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (alkynyl-JSK), which was chemically conjugated to an amphiphilic block copolymer through a click reaction for the first time. The assembled NO prodrug nanoparticles show high NO capacity (the content of the NO prodrug in the copolymer, ∼23.4% (w/w)), good stability and a sustained NO release pattern with unique glutathione/glutathione S-transferase (GSH/GST) activated NO-releasing kinetics. Such NO-loaded nanoparticles exhibit superior cytotoxicity to HepG2 cells. More importantly, in combination with doxorubicin (DOX) chemotherapy a significant synergistic therapeutic effect was achieved, due to its excellent galactose receptor-targeting capability, rapid acid-triggered DOX release and sustained NO release. Our findings indicate that these multifunctional nanoparticles can serve as an efficient NO and chemotherapeutic agent delivery platform, holding great promise in cancer combinatorial treatment.


Assuntos
Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Óxido Nítrico/administração & dosagem , Receptores de Superfície Celular/metabolismo , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio
19.
Nat Commun ; 9(1): 1848, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748611

RESUMO

Fluorescence and photoacoustic imaging have different advantages in cancer diagnosis; however, combining effects in one agent normally requires a trade-off as the mechanisms interfere. Here, based on rational molecular design, we introduce a smart organic nanoparticle whose absorbed excitation energy can be photo-switched to the pathway of thermal deactivation for photoacoustic imaging, or to allow opposed routes for fluorescence imaging and photodynamic therapy. The molecule is made of a dithienylethene (DTE) core with two surrounding 2-(1-(4-(1,2,2-triphenylvinyl)phenyl)ethylidene)malononitrile (TPECM) units (DTE-TPECM). The photosensitive molecule changes from a ring-closed, for photoacoustic imaging, to a ring-opened state for fluorescence and photodynamic effects upon an external light trigger. The nanoparticles' photoacoustic and fluorescence imaging properties demonstrate the advantage of the switch. The use of the nanoparticles improves the outcomes of in vivo cancer surgery using preoperative photoacoustic imaging and intraoperative fluorescent visualization/photodynamic therapy of residual tumours to ensure total tumour removal.


Assuntos
Antineoplásicos/química , Nanopartículas/química , Neoplasias/terapia , Imagem Óptica/métodos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Quimioterapia Adjuvante/métodos , Feminino , Humanos , Período Intraoperatório , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/mortalidade , Técnicas Fotoacústicas/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Período Pré-Operatório , Ratos , Ratos Sprague-Dawley , Taxa de Sobrevida , Temperatura , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
20.
ACS Appl Mater Interfaces ; 10(5): 4481-4493, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29327586

RESUMO

Stem cell treatment for critical limb ischemia yields a limited therapeutic effect due to cell loss and dysfunction caused by local ischemic environment. Biomimetic scaffolds emerge as ideal cell delivery vehicles for regulating cell fate via mimicking the components of stem cell niche. Herein, we prepared a bioactive hydrogel by mixing chitosan and hyaluronic acid that is immobilized with C domain peptide of insulin-like growth factor 1 (IGF-1C) and examined whether this hydrogel could augment stem cell survival and therapeutic potential. Our results showed that IGF-1C-modified hydrogel increased in vitro viability and proangiogenic activity of adipose-derived stromal cells (ADSCs). Moreover, cotransplantation of hydrogel and ADSCs into ischemic hind limbs of mice effectively ameliorated blood perfusion and muscle regeneration, leading to superior limb salvage. These therapeutic effects can be ascribed to improved ADSC retention, angiopoientin-1 secretion, and neovascularization, as well as reduced inflammatory cell infiltration. Additionally, hydrogel enhanced antifibrotic activity of ADSCs, as evidenced by decreased collagen accumulation at late stage. Together, our findings indicate that composite hydrogel modified by IGF-1C could promote survival and proangiogenic capacity of ADSCs and thereby represents a feasible option for cell-based treatment for critical limb ischemia.


Assuntos
Transplante de Células-Tronco , Tecido Adiposo , Animais , Células Cultivadas , Extremidades , Hidrogéis , Isquemia , Camundongos , Neovascularização Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA