Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 40(24): 12681-12688, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38839051

RESUMO

Photocatalytic conversion of CO2 to hydrocarbon fuel is a potential strategy to solve energy shortage and mitigate the greenhouse effect. Here, direct Z-scheme heterojunction photocatalysts (In2O3/Bi2S3) without an electron mediator are prepared by a simple hydrolysis method. The In2O3/Bi2S3 composite photocatalysts show greatly boosted photoactivity on CO2 conversion to CO compared with the pristine In2O3 and Bi2S3. The highest CO evolution rate of 2.67 µmol·g-1·h-1 is achieved by In2O3/Bi2S3-3, without any sacrificial agent or cocatalyst, which is about 3.87 times that of In2O3 (0.69 µmol·g-1·h-1). The boosted photocatalytic performance of In2O3/Bi2S3 composite catalysts can be ascribed to the establishment of a Z-scheme heterojunction, improving the photoabsorption and facilitating charge separation and transfer. This study provides a reference for designing and fabricating high-efficiency Z-scheme heterojunction photocatalysts for photocatalytic CO2 reduction.

2.
Environ Res ; 251(Pt 1): 118649, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458589

RESUMO

A novel photocatalyst In2O3 with loading Ag particles is prepared via a facile one-step annealing method in air atmosphere. The Ag/In2O3 exhibits considerable photoactivity for decomposing sulfisoxazole (SOX), tetracycline hydrochloride (TC), and rhodamine B (RhB) under natural sunlight irradiation, which is much higher than that of pristine In2O3 and Ag species. After natural sunlight irradiation for 100 min, 70.6% of SOX, 65.6% of TC, and 81.9% of RhB are degraded over Ag/In2O3, and their corresponding chemical oxygen demand (COD) removal ratio achieve 95.4%, 38.4%, and 93.6%, respectively. A batch of experiments for degrading SOX with adjusting pollutant solution pH and adding coexisting anions over Ag/In2O3 are carried out to estimate its practical application prospect. Particularly, the as-prepared Ag/In2O3 possesses a superior stability, which exhibits no noticeable deactivation in decomposing SOX after eight cycles' reactions. In addition, the Ag/In2O3 coated on a frosted glass plate, also possesses a superior activity and stability for SOX removal, which solve the possible second pollution of residual powdered catalyst in water. Ag particles on In2O3 working as electron accepter improve charge separation and transfer efficiency, as well as the photo-absorption and organic pollutants affinity, leading to the boosted photoactivity of Ag/In2O3. The photocatalytic mechanism for degrading SOX and degradation process over Ag/In2O3 has been systemically investigated and proposed. This work offers an archetype for the rational design of highly efficient photocatalysts by metal loading.


Assuntos
Prata , Luz Solar , Prata/química , Poluentes Químicos da Água/química , Catálise , Rodaminas/química , Fotólise
3.
J Environ Manage ; 323: 116236, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150351

RESUMO

The photocatalytic CO2 reduction reaction is a multi-electron process, which is greatly affected by the surface electron density. In this work, we synthesize Ag clusters supported on In2O3 plasmonic photocatalysts. The Ag-In2O3 compounds show remarkedly enhanced photocatalytic activity for CO2 conversion to CO compared to pristine In2O3. In the absence of any co-catalyst or sacrificial agent, the CO evolution rate of optimal Ag-In2O3-10 is 1.56 µmol/g/h, achieving 5.38-folds higher than that of In2O3 (0.29 µmol/g/h). Experimental verification and DFT calculation demonstrate that electrons transfer from Ag clusters to In2O3 on Ag-In2O3 compounds. In Ag-In2O3 compounds, Ag clusters serving as electron donators owing to the SPR behaviour are not helpful to decline photo-induced charge recomnation rate, but can provide more electron for photocatalytic reaction. Overall, the Ag clusters promote visible-light absorption and accelerate photocatalytic reaction kinetic for In2O3, resulting in the photocatalytic activity enhancement of Ag-In2O3 compounds. This work puts insight into the function of plasmonic metal on enhancing photocatalysis performance, and provides a feasible strategy to design and fabricate efficient plasmonic photocatalysts.

4.
ACS Nano ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38318803

RESUMO

A rarely discussed phenomenon in the realm of photocatalytic materials involves the presence of gradient distributed dopants and defects from the interior to the surface. This intriguing characteristic has been successfully achieved in the case of ZnS through the incorporation of atomic monovalent copper ions (Cu+) and concurrent sulfur vacancies (Vs), resulting in a photocatalyst denoted as G-CZS1-x. Through the cooperative action of these atomic Cu dopants and Vs, G-CZS1-x significantly extends its photoabsorption range to encompass the full spectrum (200-2100 nm), which improves the solar utilization ability. This alteration enhances the efficiency of charge separation and optimizes Δ(H*) (free energy of hydrogen adsorption) to approach 0 eV for the hydrogen evolution reaction (HER). It is noteworthy that both surface-exposed atomic Cu and Vs act as active sites for photocatalysis. G-CZS1-x exhibits a significant H2 evolution rate of 1.01 mmol h-1 in the absence of a cocatalyst. This performance exceeds the majority of previously reported photocatalysts, exhibiting approximately 25-fold as ZnS, and 5-fold as H-CZS1-x with homogeneous distribution of equal content Cu dopants and Vs. In contrast to G-CZS1-x, the H adsorption on Cu sites for H-CZS1-x (ΔG(H*) = -1.22 eV) is excessively strong to inhibit the H2 release, and the charge separation efficiency for H-CZS1-x is relatively sluggish, revealing the positive role of a gradient distribution model of dopants and defects on activity enhancement. This work highlights the synergy of atomic dopants and defects in advancing photoactivity, as well as the significant benefit of the controllable distribution model of dopants and defects for photocatalysis.

6.
J Colloid Interface Sci ; 564: 442-453, 2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-31923831

RESUMO

Charge carrier separation of photocatalysts can be accelerated by p-n heterojunctions and surface defect engineering. Here, novel silver silicate/ceria p-n heterojunction photocatalysts with a hierarchical flower-like structure were successfully synthesized through an in situ deposition-precipitation method in which p-type silver silicate (Ag6Si2O7) nanoparticles were evenly decorated on the sheets of n-type ceria (CeO2) nanoflowers prepared via an ice-bath coprecipitation process. Mott-Schottky plots and morphological studies indicated that p-n heterojunctions were constructed between Ag6Si2O7 and CeO2. This led to the generation of abundant surface defects (Ce3+ ions or oxygen vacancies) in the heterojunctions as confirmed by XPS and Raman. The photocatalytic properties are markedly improved under visible light irradiation and can be regulated by the Ag6Si2O7 content in the composites. The sample with 40 wt% Ag6Si2O7 loading had optimal photocatalytic elimination efficiency for the colorless contaminant tetracycline, the cationic dye rhodamine B, and the anionic dye methyl orange. As evidenced by various characterization techniques, the decoration of Ag6Si2O7 nanoparticles can promote the formation of a surface defect structure, increase visible light harvesting, and improve the separation of charge carriers driven by the internal electric field established between two semiconductors, thus leading to a remarkably enhanced photocatalytic activity. This work offers a reliable strategy for designing efficient p-n heterojunctions for photocatalytic applications in energy and the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA