Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biometals ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805106

RESUMO

This study investigates the correlation between the biomedical and structural properties of Zn/Sr-modified Calcium Phosphates (ZnSr-CaPs) synthesized via the sol-gel combustion method. X-ray diffraction (XRD) analysis revealed the presence of Ca10(PO4)6(OH)2 (HAp), CaCO3, and Ca(OH)2 phases in the undoped sample, while the additional phase, Ca3(PO4)2 (ß-TCP) was formed in modified samples. X-ray absorption near-edge structure (XANES) analysis demonstrated the incorporation of Sr into the lattice, with a preference for occupying the Ca1 sites in the HAp matrix. The introduction of Zn, furthermore, led to the formation of ZnO and CaZnO2 species. The ZnSr-CaPs exhibited significant antibacterial activity attributed to the generation of reactive oxygen species by ZnO, the oxidation reaction of CaZnO2, and the presence of Sr ions. Cytotoxicity tests revealed a correlation between the variation in ZnO content and cellular viability, with lower ZnO concentrations corresponding to higher cell viability. Additionally, the cooperative effects of Zn and Sr ions were found to enhance the bioactivity of CaPs, despite ZnO hindering the apatite formation process. These findings contribute to the deep understanding of the diverse role in modulating the antibacterial, cytotoxic, and bioactive properties of ZnSr-CaPs, offering potential applications in the field of biomaterials.

2.
Chemistry ; 25(48): 11337-11345, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31241218

RESUMO

Type I heterojunction films of α-Fe2 O3 /ZnO are reported here as a non-titania based photocatalyst, which shows remarkable enhancement in the photocatalytic properties towards stearic acid degradation under UVA-light exposure (λ=365 nm), with a quantum efficiency of ξ=4.42±1.54×10-4 molecules degraded/photon, which was about 16 times greater than that of α-Fe2 O3 , and 2.5 times greater than that of ZnO. Considering that the degradation of stearic acid requires 104 electron transfers for each molecule, this represents an overall quantum efficiency of 4.60 % for the α-Fe2 O3 /ZnO heterojunction. Time-resolved transient absorption spectroscopy (TAS) revealed the charge-carrier behaviour responsible for this increase in activity. Photogenerated electrons, formed in the ZnO layer, were transferred into the α-Fe2 O3 layer on the pre-µs timescale, which reduced electron-hole recombination. This increased the lifetime of photogenerated holes formed in ZnO, which oxidise stearic acid. The heterojunction α-Fe2 O3 /ZnO films grown herein show potential environmental applications as coatings for self-cleaning windows and surfaces.

3.
Heliyon ; 10(8): e29665, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644889

RESUMO

In this study, the interplay between the structural complexity, microstructure, and mechanical properties of calcium phosphates (CaPs) derived from fish bones, prepared at various calcination temperatures, and their corresponding sintered ceramics was explored. Fourier-transform infrared analysis revealed that the calcined powders primarily consisted of hydroxyapatite (HAp) and carbonated calcium hydroxyapatite, with an increasing concentration of Mg-substituted ß-tricalcium phosphate (ß-TCP) as the calcination temperature was increased. X-ray diffraction patterns showed enhanced sharpness of the peaks at higher temperatures, indicating a larger crystallite size and improved crystallinity. The ceramics exhibited a significantly larger crystallite size and an increased concentration of the ß-TCP phase. Rietveld analysis revealed a larger volume of the ß-TCP phase in the ceramics than in their calcined powders; this could be attributed to a newly formed ß-TCP phase due to the decomposition of HAp. Extended X-ray absorption fine structure analysis revealed the incorporation of Mg in the Ca2 site of HAp, Ca2 site of ß-TCP, and Ca5 site of ß-TCP, with a higher substitution of Mg in the Ca5 site of ß-TCP at elevated temperatures. The mechanical properties of HAp ceramics can be improved by increasing the calcination temperature because of their improved relative density and dense porous structure at elevated temperatures. This comprehensive investigation sheds light on the phase evolution, microstructural changes, and consequential impact on the mechanical properties of CaPs derived from fish bones, thereby facilitating the development of tailored CaP ceramics for biomedical applications.

4.
Int J Pharm X ; 5: 100169, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36861068

RESUMO

This work aimed to develop new antibiotic-coated/ antibiotic-loaded hydroxyapatite (HAp) scaffolds for orthopaedic trauma, specifically to treat the infection after fixation of skeletal fracture. The HAp scaffolds were fabricated from the Nile tilapia (Oreochromis niloticus) bones and fully characterized. The HAp scaffolds were coated with 12 formulations of poly (lactic-co-glycolic acid) (PLGA) or poly (lactic acid) (PLA), blended with vancomycin. The vancomycin release, surface morphology, antibacterial properties, and the cytocompatibility of the scaffolds were conducted. The HAp powder contains elements identical to those found in human bones. This HAp powder is suitable as a starting material to build scaffolds. After the scaffold fabrication, The ratio of HAp to ß-TCP changed, and the phase transformation of ß-TCP to α-TCP was observed. All antibiotic-coated/ antibiotic-loaded HAp scaffolds can release vancomycin into the phosphate-buffered saline (PBS) solution. PLGA-coated scaffolds obtained faster drug release profiles than PLA-coated scaffolds. The low polymer concentration in the coating solutions (20%w/v) gave a faster drug release profile than the high polymer concentration (40%w/v). All groups showed a trace of surface erosion after being submerged in PBS for 14 days. Most of the extracts can inhibit Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA). The extracts not only caused no cytotoxicity to Saos-2 bone cells but also can increase cell growth. This study demonstrates that it is possible to use these antibiotic-coated/ antibiotic-loaded scaffolds in the clinic as an antibiotic bead replacement.

5.
RSC Adv ; 9(33): 19079-19085, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35516903

RESUMO

A facile molten salt technique is an interesting preparation method as it enables mass production of materials. With the use of CsNO3 salt, Cs-intercalated MnO2 hollow microflowers are obtained in this work. δ-MnO2 with a layered structure, instead of other allotropes with smaller structural cavities, is formed and stabilized by large Cs+ ions. Formation of the hollow microflowers is explained based on the Ostwald ripening process. The salt to starting agent ratio has little effect on the crystal structure and morphologies of the products but does influence the crystallinity, the interlayer distance, and the intercalating Cs+ content. The capacity of Cs+ in the structure and the interlayer distance are maximized when the weight ratio of CsNO3 : MnSO4 is 7 : 1. Cs-MnO2 obtained from this optimum ratio has most suitable crystallinity and interlayer distance, and consequently shows a highest specific capacitance of 155 F g-1 with excellent cycling performance. The obtained specific capacitance is comparable to that of other alkaline-intercalated MnO2, suggesting that Cs-MnO2 could be another interesting candidate for supercapacitor electrodes.

6.
ACS Appl Electron Mater ; 1(8): 1408-1417, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32064464

RESUMO

Low-cost, high-efficiency, and high quality Cl-doped ZnO (ZnO:Cl) thin films that can simultaneously function as transparent conducting oxides (TCOs) and photocatalysts are described. The films have been fabricated by a facile and inexpensive solution-source aerosol-assisted chemical vapor deposition technique using NH4Cl as an effective, cheap, and abundant source of Cl. Successful ClO substitutional doping in the ZnO films was evident from powder X-ray diffraction, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry results, while scanning electron microscopy reveals the impact of Cl doping on the ZnO thin film morphology. All ZnO:Cl films deposited were transparent and uncolored; optical transmittance in the visible region (400-700 nm) exceeded 80% for depositions using 5-20 mol % Cl. Optimal electrical properties were achieved when using 5 mol % Cl with a minimum measured resistivity of (2.72 ± 0.04) × 10-3 Ω·cm, in which the charge carrier concentration and mobility were measured at (8.58 ± 0.16) × 1019 cm-3 and 26.7 ± 0.1 cm2 V-1 s-1 respectively, corresponding to a sheet resistance (R sh) of 41.9 Ω□-1 at a thickness of 650 nm. In addition to transparent conducting properties, photocatalytic behavior of stearic acid degradation in the ZnO:Cl films was also observed with an optimal Cl concentration of 7 mol % Cl, with the highest formal quantum efficiency (ξ) measured at (1.63 ± 0.03) × 10-4 molecule/photon, while retaining a visible transparency of 80% and resistivity ρ = (9.23 ± 0.13) × 10-3 Ω·cm. The dual functionality of ZnO:Cl as both a transparent conductor and an efficient photocatalyst is a unique combination of properties making this a particularly unusual material.

7.
ACS Appl Mater Interfaces ; 9(48): 42327-42335, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29116744

RESUMO

Robust superhydrophobic surfaces were synthesized as composites of the widely commercially available adhesives epoxy resin (EP) and polydimethylsiloxane (PDMS). The EP layer provided a strongly adhered micro/nanoscale structure on the substrates, while the PDMS was used as a post-treatment to lower the surface energy. In this study, the depositions of EP films were taken at a range of temperatures, deposition times, and substrates via aerosol-assisted chemical vapor deposition (AACVD). A novel dynamic deposition temperature approach was developed to create multiple-layered periodic micro/nanostructures that significantly improved the surface mechanical durability. Water droplet contact angles (CA) of 160° were observed with droplet sliding angles (SA) frequently <1°. A rigorous sandpaper abrasion test demonstrated retention of superhydrophobic properties and superior robustness therein, while wear, anticorrosion (pH = 1-14, 72 h), and UV testing (365 nm, 3.7 mW/cm2, 120 h) were carried out to exhibit the environmental stability of the films. Self-cleaning behavior was demonstrated in clearing the surfaces of various contaminating powders and aqueous dyes. This facile and flexible method for fabricating highly durable superhydrophobic polymer films points to a promising future for AACVD in their scalable and low-cost production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA