Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Chemistry ; 30(39): e202400756, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38727558

RESUMO

Multimetallic synergistic effects have the potential to improve CO2 cycloesterification and Knoevenagel reaction processes, outperforming monometallic MOFs. The results demonstrate superior performance in these processes. To investigate this, we created and characterized a selection of single-component Ln(III)-MOFs (Ln=Eu, Tb, Gd, Dy, Ho) and high-entropy lanthanide-organic framework (HE-LnMOF) using solvent-thermal conditions. The experiments revealed that HE-LnMOF exhibited heightened catalytic efficiency in CO2 cycloesterification and Knoevenagel reactions compared to single-component Ln(III) MOFs. Moreover, the HE-LnMOF displayed significant stability, maintaining their structural integrity after five cycles while sustaining elevated conversion and selectivity rates. The feasible mechanisms of catalytic reactions were also discussed. HE-LnMOF possess multiple unsaturated metal centers, acting as Lewis acid sites, with oxygen atoms connecting the metal, and hydroxyl groups on the ligand serving as base sites. This study introduces a novel method for synthesizing HE-LnMOF and presents a fresh application of HE-LnMOF for converting CO2.

2.
Angew Chem Int Ed Engl ; 62(46): e202310741, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37706280

RESUMO

Removal of trace impurities for natural gas purification coupled with waste gas conversion is highly desired in industry. We here report a type of porous ionic liquids (PILs) that can realize the continuous flow separation of CH4 /CO2 /H2 S and the conversion of the captured H2 S to useful products. The PILs are synthesized through a step-by-step surface modification of ionic liquids (ILs) onto UiO-66-OH nanocrystals. The introduction of free tertiary amine groups on the nanocrystal surface endows these PILs with an exceptional ability to enrich H2 S from CO2 and CH4 with impressive selectivity, while the permanent pores of UiO-66-OH act as containers to store an exceptionally higher amount of the selectively captured H2 S than the corresponding nonporous ILs. Simultaneously, the tertiary amines as dual functional moieties offer effective catalytic sites for the conversion of the H2 S stored in PILs into 3-mercaptoisobutyric acid, a key intermediate required for the synthesis of Captopril (an antihypertensive drug). Molecular dynamics, density functional theory calculations and Grand Canonical Monte Carlo simulations help understand both the mechanisms of separation and catalysis performance, confirming that the tertiary amines as well as the permanent pores in UiO-66-OH play vital roles in the whole procedure.

3.
Angew Chem Int Ed Engl ; 61(41): e202211780, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36008372

RESUMO

Postsynthetic modification (PSM) has been widely used in porous crystalline materials to gain better performance in adsorptive separation of gases or hydrocarbons. We here report that guest adsorption selectivity in a kind of nonporous crystalline materials, namely nonporous adaptive crystals (NACs), can be readily and precisely tuned via a facile substituent-size-dependent solid-vapor PSM method. Before PSM, NACs of pillar[4]arene[1]quinone EtP4Q1 show negligible selectivity for C5 hydrocarbons. PSM with a larger substituent, cyclopentylamine, onto EtP4Q1 NACs does not improve the selectivity, while EtP4Q1 NACs after PSM with a slightly smaller substituent, cyclobutylamine, is endowed with very high preference of n-pentane over cyclopentane. Comprehensive structural analyses confirm that the intermolecular interactions among the host compounds and host-guest interactions between the adsorbent and the adsorbate are the two major factors in determining the guest selectivity.

4.
Chem Soc Rev ; 49(5): 1517-1544, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32016241

RESUMO

Vapochromic materials, which undergo colour and/or emission changes upon exposure to certain vapours or gases, have received increasing attention recently because of their wide range of applications in, e.g., chemical sensors, light-emitting diodes, and environmental monitors. Vapochromic crystals, as a specific kind of vapochromic materials, can be investigated from the perspective of crystal engineering to understand the mechanism of vapochromism. Moreover, understanding the vapochromism mechanism will be beneficial to design and prepare task-specific vapochromic crystals as one kind of low-cost 'electronic nose' to detect toxic gases or volatile organic compounds. This review provides important information in a broad scientific context to develop new vapochromic materials, which covers organometallic or coordination complexes and organic crystals, as well as the different mechanisms of the related vapochromic behaviour. In addition, recent examples of supramolecular vapochromic crystals and metal-organic-framework (MOFs) vapochromic crystals are introduced.

5.
J Am Chem Soc ; 142(15): 6957-6961, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32212726

RESUMO

Removal of trace chlorobutane (CB) isomers is highly desired to produce high grade 1-chlorobutane (1-CB) and 2-chlorobutane (2-CB). Here, we report that nonporous adaptive crystals (NACs) of perethylated pillar[5]arene (EtP5) and pillar[6]arene (EtP6) effectively remove trace CB isomers. EtP5 NACs can remove trace 1-CB (2%) from 2-CB to improve its purity from 98.0% to 99.9%, while EtP6 NACs can remove trace 2-CB from 1-CB to improve its purity from 98.0% to 99.9%. The adsorption of trace CB isomers results in the formation of new CB-loaded crystal structures, whose thermostability is higher than their corresponding isomer-loaded structures. This determines the selectivity of NACs toward the trace CB isomers. Reversible transformations between nonporous guest-free and guest-loaded structures make EtP5 and EtP6 highly recyclable.

6.
J Am Chem Soc ; 142(36): 15560-15568, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786745

RESUMO

Organic solid-state fluorescent crystals have received extensive attention owing to their remarkable and promising optoelectronic applications in many fields. Current methods to obtain organic fluorescent crystals usually involve two steps: (1) solution phase organic synthesis and (2) crystallization of target fluorescent compounds. Direct transformation from nonfluorescent organic crystals to fluorescent organic crystals by postsynthetic modification (PSM) might be a potential alternative to the traditional methods. Although it is common to implement PSM for porous frameworks, it remains a huge challenge for nonporous organic crystals. Herein, we report a novel method of multistep solid-vapor PSM in nonporous adaptive crystals (NACs) of a pillar[4]arene[1]quinone (M1) to prepare organic solid-state fluorescent crystals. Fluorescent organic crystals can be simply generated when guest-free M1 crystals were exposed to ethylenediamine (EDA) vapor. However, only nonemissive crystals of a thermodynamically metastable intermediate M2 are obtained through solid-vapor single-crystal-to-single-crystal transformation of CH3CN-loaded M1 crystals. Solution-phase reaction of M1 with EDA affords three distinct compounds with different fluorescent properties, which are demonstrated to be the main components of the fluorescent organic crystals that are generated by the solid-vapor PSM. Mechanistic studies show that the pillararene skeleton not only induces the solid-vapor PSM by physical adsorption of EDA but also facilitates the fluorescent emission in the solid state by restricting intermolecular π-π interactions to avoid aggregation-caused quenching (ACQ). Furthermore, this interesting phenomenon is applied for facile fluorescence turn-on sensing of EDA vapor to distinguish EDA from other aliphatic amines.

7.
J Am Chem Soc ; 142(46): 19722-19730, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33166122

RESUMO

The separation of 2-methylfuran (MeF) and 2,5-dimethylfuran (DMeF) mixtures is very important in the chemical industry. Herein, we offer a novel strategy for the separation of MeF and DMeF using nonporous adaptive crystals (NACs) of perethylated pillar[5]arene (EtP5), perethylated pillar[6]arene (EtP6), perbromoethylated pillar[5]arene (BrP5), and perbromoethylated pillar[6]arene (BrP6). We find that the crystals of EtP6 and BrP5 show remarkable selectivities for MeF in a 50:50 (v/v) MeF:DMeF mixture vapor, yielding purities of 94.0 and 96.3%, respectively. Single-crystal structures reveal that these different selectivities come from the different thermodynamic stabilities and binding modes of the host-guest complexes. Cycling experiments demonstrate that these crystals can be reused more than five cycles without loss of performance.

8.
Angew Chem Int Ed Engl ; 59(13): 5355-5358, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-31951060

RESUMO

The production of high purity toluene and pyridine is of significance in both industrial production and synthetic chemistry. The present protocols available to separate toluene/pyridine mixtures are several energy-intensive distillation methods, which are not environmentally friendly and cost-effective. Herein, we provide an energy-efficient and simple adsorptive separation protocol using nonporous adaptive crystals of cucurbit[6]uril (Q[6]). Q[6] crystals separate pyridine from toluene/pyridine mixtures with nearly 100 % purity. Furthermore, removal of the guest from guest-loaded Q[6] leads to the guest-free cucurbit[6]uril, which can be recycled without losing performance.

9.
Angew Chem Int Ed Engl ; 59(6): 2268-2272, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31778000

RESUMO

Porous liquids are a type of porous materials that engineer permanent porosity into unique flowing liquids, exhibiting promising functionalities for a variety of applications. Here a Type I porous liquid is synthesized by transforming porous organic cages into porous ionic liquids via a supramolecular complexation strategy. Simple physical mixing of 18-crown-6 with task-specific anionic porous organic cages affords a porous ionic liquid with anionic porous organic cages as the anionic parts and 18-crown-6/potassium ion complexes as the cationic parts. In contrast, mixing of 15-crown-5 and anionic porous organic cages in a 2:1 ratio gives only solids, while the addition of excess 15-crown-5 affords a Type II porous liquid. The permanent porosity in the cage-based porous liquids has been also confirmed by molecular simulation, positron (e+ ) annihilation lifetime spectroscopy, and enhanced gas sorption capacity compared with pure crown ethers.

10.
J Am Chem Soc ; 141(30): 11847-11851, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31299149

RESUMO

The separation of haloalkene cis-trans isomers is difficult to achieve, yet highly desired in the chemical industry. Here, we report an energy-efficient adsorptive separation of 1,4-dichloro-2-butene (DCB) cis-trans isomers using nonporous adaptive crystals of perethylated pillararenes. Adaptive perethylated pillar[6]arene (EtP6) crystals separate the trans-DCB isomer from its cis isomer with high selectivity while perethylated pillar[5]arene (EtP5) crystals adsorb cis-trans DCB isomers without selectivity. The selectivity of EtP6 derives from the difference in the thermodynamic stabilities of guest-loaded EtP6 crystal structures upon capture of cis-trans DCB isomers, while the structural similarity of guest-loaded EtP5 leads to the loss of selectivity. EtP6 is highly recyclable due to the reversible transformations between guest-free and guest-loaded structures.

11.
Acc Chem Res ; 51(9): 2064-2072, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30011181

RESUMO

Porous materials with high surface areas have drawn more and more attention in recent years because of their wide applications in physical adsorption and energy-efficient adsorptive separation processes. Most of the reported porous materials are macromolecular porous materials, such as zeolites, metal-organic frameworks (MOFs), or porous coordination polymers (PCPs), and porous organic polymers (POPs) or covalent organic frameworks (COFs), in which the building blocks are linked together by covalent or coordinative bonds. These materials are barely soluble and thus are not solution-processable. Furthermore, the relatively low chemical, moisture, and thermal stability of most MOFs and COFs cannot be neglected. On the other hand, molecular porous materials such as porous organic cages (POCs), which have been developed very recently, also show promising applications in adsorption and separation processes. They can be soluble in organic solvents, making them solution-processable materials. However, they are usually sensitive to acid/base and humid environments since most of them are based on dynamic covalent bonding. These macromolecular and molecular porous materials usually have two similar features: high Brunauer-Emmett-Teller (BET) surface areas and rigid pore structures, which are stable during adsorption and separation processes. In this Account, we describe a novel class of solid materials for adsorption and separation, nonporous adaptive crystals (NACs), which function at the supramolecular level. They are nonporous in the initial crystalline state, but the intrinsic or extrinsic porosity of the crystals along with a crystal structure transformation is induced by preferable guest molecules. Unlike solvent-induced crystal polymorphism phenomena of common organic crystals that occur at the solid-liquid phase, NACs capture vaporized guests at the solid-gas phase. Upon removal of guest molecules, the crystal structure transforms back to the original nonporous structure. Here we focus on the discussion of pillararene-based NACs for adsorption and separation and the crystal structure transformations from the initial nonporous crystalline state to new guest-loaded structures during the adsorption and separation processes. Single-crystal X-ray diffraction, powder X-ray diffraction, gas chromatography, and solution NMR spectroscopy are the main techniques to verify the adsorption and separation processes and the structural transformations. Compared with traditional porous materials, NACs of pillararenes have several advantages. First, their preparation is simple and cheap, and they can be synthesized on a large scale to meet practical demands. Second, pillararenes have better chemical, moisture, and thermal stability than crystalline MOFs, COFs, and POCs, which are usually constructed on the basis of reversible chemical bonds. Third, pillararenes are soluble in many common organic solvents, which means that they can be easily processed in solution. Fourth, their regeneration is simple and they can be reused many times with no decrease in performance. It is expected that this class of materials will not only exert a significant influence on scientific research but also show practical applications in chemical industry.

12.
Angew Chem Int Ed Engl ; 58(12): 3981-3985, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30701668

RESUMO

The separation of dihalobenzene isomers, such as dichlorobenzene isomers and difluorobenzene isomers, has a high practical value in both synthetic chemistry and industrial production. Herein we provide a simple to operate and energy-efficient adsorptive separation method using nonporous adaptive crystals of perbromoethylated pillar[5]arene (BrP5) and pillar[6]arene (BrP6). BrP6 crystals show a preference towards the ortho isomer of dichlorobenzene in isomer mixtures, but cannot discriminate difluorobenzene isomers. Single-crystal structures reveal that this selectivity is derived from the stability of the new host-guest crystal structure of BrP6 after uptake of the preferred guest and the binding strength of the host-guest interactions. Furthermore, because of the reversible transition between guest-free and guest-loaded structures, BrP6 crystals are recyclable.

13.
Angew Chem Int Ed Engl ; 58(15): 5018-5022, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30746826

RESUMO

High-entropy materials refer to a kind of materials in which five or more metal species were incorporated deliberately into a single lattice with random occupancy. Up to now, such a concept has been only restricted to hard materials, such as high-entropy alloys and ceramics. Herein we report the synthesis of hybrid high-entropy materials, polymetallic zeolitic imidazolate framework (also named as high-entropy zeolitic imidazolate framework, HE-ZIF), via entropy-driven room-temperature mechanochemistry. HE-ZIF contains five metals including ZnII , CoII , CdII , NiII , and CuII which are dispersed in the ZIF structure randomly. Moreover, HE-ZIF shows enhanced catalytic conversion of CO2 into carbonate compared with ZIF-8 presumably a result of the synergistic effect of the five metal ions as Lewis acid in epoxide activation.

14.
Angew Chem Int Ed Engl ; 58(39): 13763-13767, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31310437

RESUMO

Progress toward the preparation of porous organic polymers (POPs) with task-specific functionalities has been exceedingly slow-especially where polymers containing low-oxidation phosphorus in the structure are concerned. A two-step topotactic pathway for the preparation of phosphabenzene-based POPs (Phos-POPs) under metal-free conditions is reported, without the use of unstable phosphorus-based monomers. The synthetic route allows additional functionalities to be introduced into the porous polymer framework with ease. As an example, partially fluorinated Phos-POPs (F-Phos-POPs) were obtained with a surface area of up to 591 m2 g-1 . After coordination with Ru species, a Ru/F-Phos-POPs catalyst exhibited high catalytic efficiency in the formylation of amines (turnover frequency up to 204 h-1 ) using a CO2 /H2 mixture, in comparison with the non-fluorinated analogue (43 h-1 ) and a Au/TiO2 heterogeneous catalysts reported previously (<44 h-1 ). This work describes a practical method for synthesis of porous organic phosphorus-based polymers with applications in transition-metal-based heterogeneous catalysis.

15.
J Am Chem Soc ; 140(44): 15070-15079, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30362734

RESUMO

Postsynthetic modification in crystalline solids without disruption of crystallinity is very important for exerting control that is unattainable over chemical transformation in solution. This has been achieved in porous crystalline frameworks via solid-solution reactions to endow them with multiple functions. However, this is rather rare in nonporous molecular crystals, especially via solid-vapor reactions. Herein, we report unique solid-vapor postsynthetic modification of nonporous adaptive crystals (NACs) of a pillar[4]arene[1]quinone (EtP4Q1) containing four inert 1,4-diethoxybenzene units and one active benzoquinone unit. Amine vapors that can be physically adsorbed by EtP4Q1 NACs react with the EtP4Q1 backbone via Michael addition with in situ formation of new crystal structures. First, amines are physically adsorbed into cavities of EtP4Q1 molecules and slowly react due to their juxtapsition with the benzoquinone units. Amines that are too bulky to enter EtP4Q1 NACs do not react. Moreover, the process displays both reactant-size and -shape selectivities because of the rigid cavity of EtP4Q1 and the different binding strengths of various amines with EtP4Q1.

16.
J Am Chem Soc ; 140(9): 3190-3193, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29432675

RESUMO

Here we show a new adsorptive separation approach using nonporous adaptive crystals of a pillar[5]arene. Desolvated perethylated pillar[5]arene crystals (EtP5α) with a nonporous character selectively adsorb 1-pentene (1-Pe) over its positional isomer 2-pentene (2-Pe), leading to a structural change from EtP5α to 1-Pe loaded structure (1-Pe@EtP5). The purity of 1-Pe reaches 98.7% in just one cycle and EtP5α can be reused without losing separation performance.

17.
J Am Chem Soc ; 140(22): 6921-6930, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29754488

RESUMO

The energy-efficient separation of alkylaromatic compounds is a major industrial sustainability challenge. The use of selectively porous extended frameworks, such as zeolites or metal-organic frameworks, is one solution to this problem. Here, we studied a flexible molecular material, perethylated pillar[ n]arene crystals ( n = 5, 6), which can be used to separate C8 alkylaromatic compounds. Pillar[6]arene is shown to separate para-xylene from its structural isomers, meta-xylene and ortho-xylene, with 90% specificity in the solid state. Selectivity is an intrinsic property of the pillar[6]arene host, with the flexible pillar[6]arene cavities adapting during adsorption thus enabling preferential adsorption of para-xylene in the solid state. The flexibility of pillar[6]arene as a solid sorbent is rationalized using molecular conformer searches and crystal structure prediction (CSP) combined with comprehensive characterization by X-ray diffraction and 13C solid-state NMR spectroscopy. The CSP study, which takes into account the structural variability of pillar[6]arene, breaks new ground in its own right and showcases the feasibility of applying CSP methods to understand and ultimately to predict the behavior of soft, adaptive molecular crystals.

18.
Angew Chem Int Ed Engl ; 57(39): 12845-12849, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30088688

RESUMO

The separation of cyclic aliphatics of high purity, which are produced from hydrogenation of the corresponding aromatics, is highly desired in the chemical industry. An energy-efficient and environmentally friendly adsorptive separation method using nonporous adaptive crystals of perethylated pillar[5]arene (EtP5) and pillar[6]arene (EtP6) is described. Adaptive EtP5 crystals separate toluene from methylcyclohexane with 98.8 % purity, while adaptive EtP6 crystals separate methylcyclohexane from toluene with 99.2 % purity. The selectivities come from the stability of new EtP5 and EtP6 crystal structures upon capture of toluene and methylcyclohexane, respectively. The reversible transformations between nonporous guest-free EtP5 or EtP6 structures and guest-loaded structures make them highly recyclable.

19.
J Am Chem Soc ; 139(43): 15320-15323, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29035524

RESUMO

Here we report that easily obtained per-ethylated pillar[6]arene (EtP6) is a new adsorbent for iodine capture with high chemical and thermal stability. Nonporous EtP6 solids are shown to capture not only volatile iodine in the air but also iodine dissolved in an organic solvent and aqueous solution. Uptake of iodine leads to a structural transformation of EtP6 in the solid state. In the single crystal structure of iodine-doped EtP6 (I2@EtP6), each adsorbed iodine molecule is located between two adjacent EtP6 molecules to form a linear supramolecular polymer. Iodine is released spontaneously from I2@EtP6 solids when they are immersed in cyclohexane. These EtP6 solids can be reused many times without losing iodine capture capacity.

20.
J Am Chem Soc ; 139(8): 2908-2911, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28182420

RESUMO

The separation of styrene (St) and ethylbenzene (EB) mixtures is important in the chemical industry. Here, we explore the St and EB adsorption selectivity of two pillar-shaped macrocyclic pillar[n]arenes (EtP5 and EtP6; n = 5 and 6). Both crystalline and amorphous EtP6 can capture St from a St-EB mixture with remarkably high selectivity. We show that EtP6 can be used to separate St from a 50:50 v/v St:EB mixture, yielding in a single adsorption cycle St with a purity of >99%. Single-crystal structures, powder X-ray diffraction patterns, and molecular simulations all suggest that this selectivity is due to a guest-induced structural change in EtP6 rather than a simple cavity/pore size effect. This restructuring means that the material "self-heals" upon each recrystallization, and St separation can be carried out over multiple cycles with no loss of performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA