Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Cell Mol Life Sci ; 80(4): 112, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004621

RESUMO

Recently, a number of reports on the importance of USP35 in cancer have been published. However, very little is known about the exact mechanism by which USP35 activity is regulated. Here, we show the possible regulation of USP35 activity and the structural specificity affecting its function by analyzing various fragments of USP35. Interestingly, the catalytic domain of USP35 alone does not exhibit deubiquitinating activity; in contrast, the C-terminal domain and insertion region in the catalytic domain is required for full USP35 activity. Additionally, through its C-terminal domain, USP35 forms a homodimer that prevents USP35 degradation. CHIP bound to HSP90 interacts with and ubiquitinates USP35. However, when fully functional USP35 undergoes auto-deubiquitination, which attenuates CHIP-mediated ubiquitination. Finally, USP35 dimer is required for deubiquitination of the substrate Aurora B and regulation of faithful mitotic progression. The properties of USP35 identified in this study are a unique homodimer structure, regulation of deubiquitinating activity through this, and utilization of a novel E3 ligase involved in USP35 auto-deubiquitination, which adds another complexity to the regulation of deubiquitinating enzymes.


Assuntos
Neoplasias , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Ubiquitinação
2.
Eur Phys J E Soft Matter ; 46(9): 73, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653246

RESUMO

Aggregated and hyperphosphorylated Tau is one of the pathological hallmarks of Alzheimer's disease. Tau is a polyampholytic and intrinsically disordered protein (IDP). In this paper, we present for the first time experimental results on the ionic strength dependence of the radius of gyration (Rg) of human Tau 4RS and 4RL isoforms. Synchrotron X-ray scattering revealed that 4RS Rg is regulated from 65.4 to 58.5 Å and 4RL Rg is regulated from 70.9 to 57.9 Å by varying ionic strength from 0.01 to 0.592 M. The Rg of 4RL Tau is larger than 4RS at lower ionic strength. This result provides an insight into the ion-responsive nature of intrinsically disordered and polyampholytic Tau, and can be implicated to the further study of Tau-Tau and Tau-tubulin intermolecular structure in ionic environments.


Assuntos
Proteínas Intrinsicamente Desordenadas , Síncrotrons , Humanos , Raios X
3.
Mol Cell ; 57(2): 290-303, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25557547

RESUMO

SMC condensin complexes are central modulators of chromosome superstructure in all branches of life. Their SMC subunits form a long intramolecular coiled coil, which connects a constitutive "hinge" dimerization domain with an ATP-regulated "head" dimerization module. Here, we address the structural arrangement of the long coiled coils in SMC complexes. We unequivocally show that prokaryotic Smc-ScpAB, eukaryotic condensin, and possibly also cohesin form rod-like structures, with their coiled coils being closely juxtaposed and accurately anchored to the hinge. Upon ATP-induced binding of DNA to the hinge, however, Smc switches to a more open configuration. Our data suggest that a long-distance structural transition is transmitted from the Smc head domains to regulate Smc-ScpAB's association with DNA. These findings uncover a conserved architectural theme in SMC complexes, provide a mechanistic basis for Smc's dynamic engagement with chromosomes, and offer a molecular explanation for defects in Cornelia de Lange syndrome.


Assuntos
Proteínas de Bactérias/ultraestrutura , Proteínas de Ciclo Celular/ultraestrutura , DNA Bacteriano/química , Pyrococcus furiosus , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Ciclo Celular/química , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína
4.
Arch Biochem Biophys ; 730: 109391, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36087768

RESUMO

Cupriavidus necator H16 is a gram-negative chemolithoautotrophic bacterium that has been extensively studied for biosynthesis and biodegradation of polyhydroxyalkanoate (PHA) plastics. To improve our understanding of fatty acid metabolism for PHA production, we determined the crystal structure of multi-functional enoyl-CoA hydratase from Cupriavidus necator H16 (CnFadB). The predicted model of CnFadB created by AlphaFold was used to solve the phase problem during determination of the crystal structure of the protein. The CnFadB structure consists of two distinctive domains, an N-terminal enol-CoA hydratase (ECH) domain and a C-terminal 3-hydroxyacyl-CoA dehydrogenase (HAD) domain, and the substrate- and cofactor-binding modes of these two functional domains were identified. Unlike other known FadB enzymes that exist as dimers complexed with FadA, CnFadB functions as a monomer without forming a complex with CnFadA. Small angle X-ray scattering (SAXS) measurement further proved that CnFadB exists as a monomer in solution. The non-sequential action of FadA and FadB in C. necator appears to affect ß-oxidation and PHA synthesis/degradation.


Assuntos
Cupriavidus necator , Poli-Hidroxialcanoatos , Cupriavidus necator/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Enoil-CoA Hidratase/metabolismo , Ácidos Graxos/metabolismo , Plásticos/metabolismo , 3-Hidroxiacil-CoA Desidrogenase/metabolismo , Coenzima A/metabolismo
5.
Macromol Rapid Commun ; 42(14): e2100186, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33987942

RESUMO

This study reports for the first time the excellent nonvolatile and volatile digital memory characteristics of polymers bearing 2-pyrrolidone and succinimide moieties. A series of new polymers is synthesized from poly(ethylene-alt-maleic anhydride) and four alcohol derivatives with and without 2-pyrrolidone and succinimide moieties. All polymers, including polyvinylpyrrolidone, are found to be thermally stable up to 195 °C or higher, and characterized regarding their molecular orbital energy levels, bandgap, and resistive digital memory behaviors. Excitingly, the polymers bearing either 2-pyrrolidone or succinimide moiety demonstrate p-type digital memory behaviors with high ON/OFF current ratios and long reliabilities. Nonvolatile digital memory performance is achieved over the film thickness range of 10-80 nm, whereas volatile digital memory is demonstrated over a much narrower range of film thickness. All digital memory performances can be originated from the 2-pyrrolidone and succinimide moieties possessing high affinity and stabilization power to charges via charge traps and transformations based on a hopping conduction process. Hence, these new polymers are suitable for the production of high-performance p-type nonvolatile and volatile digital memory devices. Moreover, 2-pyrrolidone and succinimide can be used as new and economical electroactive building blocks for the development of advanced digital memory materials.


Assuntos
Polímeros , Pirrolidinonas , Succinimidas
6.
Environ Microbiol ; 22(2): 752-765, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31814251

RESUMO

The bi-functional malonyl-CoA reductase is a key enzyme of the 3-hydroxypropionate bi-cycle for bacterial CO2 fixation, catalysing the reduction of malonyl-CoA to malonate semialdehyde and further reduction to 3-hydroxypropionate. Here, we report the crystal structure and the full-length architecture of malonyl-CoA reductase from Porphyrobacter dokdonensis. The malonyl-CoA reductase monomer of 1230 amino acids consists of four tandemly arranged short-chain dehydrogenases/reductases, with two catalytic and two non-catalytic short-chain dehydrogenases/reductases, and forms a homodimer through paring contact of two malonyl-CoA reductase monomers. The complex structures with its cofactors and substrates revealed that the malonyl-CoA substrate site is formed by the cooperation of two short-chain dehydrogenases/reductases and one novel extra domain, while only one catalytic short-chain dehydrogenase/reductase contributes to the formation of the malonic semialdehyde-binding site. The phylogenetic and structural analyses also suggest that the bacterial bi-functional malonyl-CoA has a structural origin that is completely different from the archaeal mono-functional malonyl-CoA and malonic semialdehyde reductase, and thereby constitute an efficient enzyme.


Assuntos
Alphaproteobacteria/enzimologia , Malondialdeído/análogos & derivados , Malonil Coenzima A/metabolismo , Oxirredutases/metabolismo , Sítios de Ligação/fisiologia , Ácido Láctico/análogos & derivados , Ácido Láctico/metabolismo , Malondialdeído/metabolismo , Filogenia , Ligação Proteica/fisiologia , Conformação Proteica
7.
Langmuir ; 36(28): 8174-8183, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32597190

RESUMO

Herein, the effects of various alcohols on lecithin/CaCl2 organogels are investigated. Mixtures of lecithin and CaCl2 form reverse cylindrical micelles, resulting in optically transparent organogels. The addition of various alcohols to a mixture of lecithin and CaCl2 induces a decrease in viscosity through which reverse cylindrical micelles are transformed into spherical micelles (or short cylindrical micelles). Long-hydrocarbon-chain alcohols decrease the viscosity of lecithin/CaCl2 mixtures more efficiently. Hydrogen bonding and hydrocarbon chain interactions between lecithin and alcohol play important roles in the morphological transition. More importantly, isothermal titration calorimetry was conducted to obtain thermodynamic variables such as the enthalpy, equilibrium constant, Gibbs free energy, entropy, and stoichiometry of the associated molecules observed in the transition. It was found that the transition is an entropically driven process, in which the endothermic and exothermic behaviors were observed depending on the hydrocarbon chain length in the alcohol. In addition, the enthalpy for the association of the alcohol with lecithin showed a linear relationship depending on the hydrocarbon chain length, in which the magnitude of hydrogen bonding and hydrocarbon chain interactions was obtained quantitatively. To the best of our knowledge, this is the first study reporting the thermodynamic properties of the morphological transition observed in a reverse self-assembly process.

8.
Nano Lett ; 19(4): 2313-2321, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30673238

RESUMO

Nanoparticle superlattices (NPSLs) are of great interest as materials with designed emerging properties depending on the lattice symmetry as well as composition. The symmetry transition of NPSLs depending on environmental conditions can be an excellent ground for making new stimuli-responsive functional materials. Here, we report a spherical micelle-assisted method to form exceptionally ordered NPSLs which are inherently sensitive to environmental conditions. Upon mixing functionalized gold nanoparticles (AuNPs) with a nonionic surfactant spherical micellar solution, NPSLs of different symmetries such as NaZn13, MgZn2, and AlB2-type are formed depending on the size ratio between micelles and functionalized AuNPs and composition. The NPSLs formed by the spherical micelle-assisted method show thermally reversible order-order (NaZn13-AlB2) and order-disorder (MgZn2-isotropic) symmetry transitions, which are consistent with the Gibbs free energy calculations for binary hard-sphere model. This approach may open up new possibilities for NPSLs as stimuli-responsive functional materials.

9.
Proc Natl Acad Sci U S A ; 113(18): E2480-8, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27099293

RESUMO

DNA-binding repressors are involved in transcriptional repression in many organisms. Disabling a repressor is a crucial step in activating expression of desired genes. Thus, several mechanisms have been identified for the removal of a stably bound repressor (Rep) from the operator. Here, we describe an uncharacterized mechanism of noncanonical DNA binding and induction by a Rep from the temperate Salmonella phage SPC32H; this mechanism was revealed using the crystal structures of homotetrameric Rep (92-198) and a hetero-octameric complex between the Rep and its antirepressor (Ant). The canonical method of inactivating a repressor is through the competitive binding of the antirepressor to the operator-binding site of the repressor; however, these studies revealed several noncanonical features. First, Ant does not compete for the DNA-binding region of Rep. Instead, the tetrameric Ant binds to the C-terminal domains of two asymmetric Rep dimers. Simultaneously, Ant facilitates the binding of the Rep N-terminal domains to Ant, resulting in the release of two Rep dimers from the bound DNA. Second, the dimer pairs of the N-terminal DNA-binding domains originate from different dimers of a Rep tetramer (trans model). This situation is different from that of other canonical Reps, in which two N-terminal DNA-binding domains from the same dimeric unit form a dimer upon DNA binding (cis model). On the basis of these observations, we propose a noncanonical model for the reversible inactivation of a Rep by an Ant.


Assuntos
DNA Viral/química , Modelos Químicos , Modelos Moleculares , Proteínas Repressoras/química , Proteínas Repressoras/ultraestrutura , Bacteriófagos/química , Bacteriófagos/genética , Sítios de Ligação , Simulação por Computador , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica
10.
J Biol Chem ; 292(17): 7077-7086, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28298447

RESUMO

Intercellular epithelial junctions formed by classical cadherins, ß-catenin, and the actin-binding protein α-catenin link the actin cytoskeletons of adjacent cells into a structural continuum. These assemblies transmit forces through the tissue and respond to intracellular and extracellular signals. However, the mechanisms of junctional assembly and regulation are poorly understood. Studies of cadherin-catenin assembly in a number of metazoans have revealed both similarities and unexpected differences in the biochemical properties of the cadherin·catenin complex that likely reflect the developmental and environmental requirements of different tissues and organisms. Here, we report the structural and biochemical characterization of HMP-1, the Caenorhabditis elegans α-catenin homolog, and compare it with mammalian α-catenin. HMP-1 shares overall similarity in structure and actin-binding properties, but displayed differences in conformational flexibility and allosteric regulation from mammalian α-catenin. HMP-1 bound filamentous actin with an affinity in the single micromolar range, even when complexed with the ß-catenin homolog HMP-2 or when present in a complex of HMP-2 and the cadherin homolog HMR-1, indicating that HMP-1 binding to F-actin is not allosterically regulated by the HMP-2·HMR-1 complex. The middle (i.e. M) domain of HMP-1 appeared to be less conformationally flexible than mammalian α-catenin, which may underlie the dampened effect of HMP-2 binding on HMP-1 actin-binding activity compared with that of the mammalian homolog. In conclusion, our data indicate that HMP-1 constitutively binds ß-catenin and F-actin, and although the overall structure and function of HMP-1 and related α-catenins are similar, the vertebrate proteins appear to be under more complex conformational regulation.


Assuntos
Actinas/química , Caderinas/química , Proteínas de Caenorhabditis elegans/química , Proteínas do Citoesqueleto/química , alfa Catenina/química , beta Catenina/química , Sítio Alostérico , Animais , Caenorhabditis elegans , Adesão Celular , Cristalografia por Raios X , Glutationa Transferase/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Coelhos , Relação Estrutura-Atividade , Vinculina/química
11.
EMBO J ; 33(9): 1061-72, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24733841

RESUMO

The Mus81-Eme1 complex is a structure-selective endonuclease with a critical role in the resolution of recombination intermediates during DNA repair after interstrand cross-links, replication fork collapse, or double-strand breaks. To explain the molecular basis of 3' flap substrate recognition and cleavage mechanism by Mus81-Eme1, we determined crystal structures of human Mus81-Eme1 bound to various flap DNA substrates. Mus81-Eme1 undergoes gross substrate-induced conformational changes that reveal two key features: (i) a hydrophobic wedge of Mus81 that separates pre- and post-nick duplex DNA and (ii) a "5' end binding pocket" that hosts the 5' nicked end of post-nick DNA. These features are crucial for comprehensive protein-DNA interaction, sharp bending of the 3' flap DNA substrate, and incision strand placement at the active site. While Mus81-Eme1 unexpectedly shares several common features with members of the 5' flap nuclease family, the combined structural, biochemical, and biophysical analyses explain why Mus81-Eme1 preferentially cleaves 3' flap DNA substrates with 5' nicked ends.


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Endodesoxirribonucleases/química , Endonucleases/química , Região 5'-Flanqueadora , Cristalografia por Raios X , Quebras de DNA de Cadeia Simples , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
12.
Biochem Biophys Res Commun ; 498(4): 775-781, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29526756

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPRs) from Prevotella and Francisella 1 (Cpf1) are RNA-guided endonucleases that produce cohesive double-stranded breaks in DNA by specifically recognizing thymidine-rich protospacer-adjacent motif (PAM) sequences. Cpf1 is emerging as a powerful genome-editing tool. Despite previous structural studies on various Cpf1 proteins, the apo-structure of Cpf1 remains unknown. In the present study, we determined the solution structure of the Cpf1 protein from Francisella novicida (FnCpf1) with and without CRISPR RNA (crRNA) using small-angle X-ray scattering, providing the insights into the apo-structure of FnCpf1. The apo-structure of FnCpf1 was also visualized using negative staining electron microcopy. When we compared the apo-structure of FnCpf1 with crRNA-bound structure, their overall shapes (a closed form) were similar, suggesting that conformational change upon crRNA binding to FnCpf1 is not drastic, but a local induced fit might occur to recognize PAM sequences. In contrast, the apo Cpf1 from Moraxella bovoculi 237 (MbCpf1) was analyzed as an open form, implying that a large conformational change from an open to a closed form might be required for crRNA binding to MbCpf1. These results suggested that the crRNA-induced conformational changes in Cpf1 differ among species.


Assuntos
Proteínas de Bactérias/química , Proteínas Associadas a CRISPR/química , Endonucleases/química , Francisella/química , Proteínas de Ligação a RNA/química , Proteínas de Bactérias/ultraestrutura , Proteínas Associadas a CRISPR/ultraestrutura , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Cristalografia por Raios X , Endonucleases/ultraestrutura , Modelos Moleculares , Conformação Proteica , Proteínas de Ligação a RNA/ultraestrutura
13.
Nanotechnology ; 29(27): 275708, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29658888

RESUMO

Small angle x-ray scattering (SAXS) was used to estimate the degree of polymerization of polymer-grafted carbon nanotubes (CNTs) synthesized using a 'grafting from' method. This analysis characterizes the grafted polymer chains without cleaving them from CNTs, and provides reliable data that can complement conventional methods such as thermogravimetric analysis or transmittance electron microscopy. Acrylonitrile was polymerized from the surface of the CNTs by using redox initiation to produce poly-acrylonitrile-grafted CNTs (PAN-CNTs). Polymerization time and the initiation rate were varied to control the degree of polymerization. Radius of gyration (R g ) of PAN-CNTs was determined using the Guinier plot obtained from SAXS solution analysis. The results showed consistent values according to the polymerization condition, up to a maximum R g  = 125.70 Å whereas that of pristine CNTs was 99.23 Å. The dispersibility of PAN-CNTs in N,N-dimethylformamide was tested using ultraviolet-visible-near infrared spectroscopy and was confirmed to increase as the degree of polymerization increased. This analysis will be helpful to estimate the degree of polymerization of any polymer-grafted CNTs synthesized using the 'grafting from' method and to fabricate polymer/CNT composite materials.

14.
Amino Acids ; 49(4): 715-723, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28144743

RESUMO

We analyzed the structure of horseradish peroxidase (HRP) under denaturing conditions of 9 M urea or 6 M guanidine hydrochloride (GdnHCl). Far-UV circular dichroism (CD) spectra indicated the existence of native-like secondary structure of holo-HRP in 9 M urea. In addition, slight changes in near-UV and Soret region CD spectra of holo-HRP in 9 M urea suggest that the tertiary structure of holo-HRP and the binding of heme remain partially intact in this condition. A transition in the thermal unfolding transition curve of holo-HRP in 9 M urea indicated the existence of a considerable amount of secondary structure. However, no secondary structure, tertiary structure, or interaction between heme and HRP were observed in holo-HRP in 6 M GdnHCl. Small-angle X-ray scattering indicated that although distal and proximal domains of holo-HRP in 9 M urea might be partially unfolded, the central region that contains the heme might maintain its tertiary structure. Our results suggest that retention of the heme is essential for maintenance of the structure of HRP under highly denaturing conditions.


Assuntos
Heme/química , Peroxidase do Rábano Silvestre/química , Dicroísmo Circular , Guanidina/química , Modelos Moleculares , Desnaturação Proteica , Estrutura Terciária de Proteína , Desdobramento de Proteína , Temperatura , Ureia/química , Difração de Raios X
15.
Amino Acids ; 49(3): 461-471, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27394142

RESUMO

Transglutaminase 2 (TGase 2) catalyzes a crosslink between protein bound-glutamine and -lysine. We proposed the mechanism of TGase 2 activation depends on conformation change from unfolded monomer to unfolded dimer. We found that TGase 2 has temperature-sensitive conformation change system at 30 °C. Small-angle X-ray scattering analysis showed that the enzyme was maintained as an unfolded monomer at temperatures below 30 °C, but changed to an unfolded dimer at over 30 °C. Mass analysis revealed that the C-terminus of TGase 2 was the critical region for dimerization. Furthermore, this conformational switch creates new biochemical reactivity that catalyzed inter-molecular crosslink at above 30 °C as an unfolded dimer of TGase 2 while catalyzed intra-molecular crosslink at below 30 °C as an unfolded monomer of TGase 2. The mechanism of TGase 2 activation depends on temperature-sensitive conformation change from unfolded monomer to unfolded dimer at over 30 °C. Furthermore, inter-molecular crosslinking activity is generated by the dimeric form of TGase 2. TGase 2 switches its conformation from a monomer to a dimer following a change in temperature, which engendered unique catalytic function of enzyme as inter-molecular crosslinking activity with calcium.


Assuntos
Proteínas de Ligação ao GTP/química , Glutamina/química , Lisina/química , Transglutaminases/química , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glutamina/metabolismo , Humanos , Lisina/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Proteína 2 Glutamina gama-Glutamiltransferase , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Especificidade por Substrato , Temperatura , Transglutaminases/genética , Transglutaminases/metabolismo , Difração de Raios X
16.
Proc Natl Acad Sci U S A ; 111(42): 15084-9, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288775

RESUMO

In higher eukaryotes, one of the two arginyl-tRNA synthetases (ArgRSs) has evolved to have an extended N-terminal domain that plays a crucial role in protein synthesis and cell growth and in integration into the multisynthetase complex (MSC). Here, we report a crystal structure of the MSC subcomplex comprising ArgRS, glutaminyl-tRNA synthetase (GlnRS), and the auxiliary factor aminoacyl tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1)/p43. In this complex, the N-terminal domain of ArgRS forms a long coiled-coil structure with the N-terminal helix of AIMP1 and anchors the C-terminal core of GlnRS, thereby playing a central role in assembly of the three components. Mutation of AIMP1 destabilized the N-terminal helix of ArgRS and abrogated its catalytic activity. Mutation of the N-terminal helix of ArgRS liberated GlnRS, which is known to control cell death. This ternary complex was further anchored to AIMP2/p38 through interaction with AIMP1. These findings demonstrate the importance of interactions between the N-terminal domains of ArgRS and AIMP1 for the catalytic and noncatalytic activities of ArgRS and for the assembly of the higher-order MSC protein complex.


Assuntos
Aminoacil-tRNA Sintetases/química , Arginina-tRNA Ligase/química , Citocinas/química , Proteínas de Neoplasias/química , Proteínas de Ligação a RNA/química , Sítios de Ligação , Cromatografia em Gel , Dicroísmo Circular , Cristalografia por Raios X , Escherichia coli/metabolismo , Glutationa Transferase/química , Humanos , Modelos Moleculares , Complexos Multiproteicos , Mutagênese , Mutação , Biossíntese de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento de Radiação
17.
Biochim Biophys Acta ; 1848(10 Pt A): 1996-2001, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26112463

RESUMO

The effects of lipid compositions on their physicochemical properties and transfection efficiencies were investigated. Four liposome formulations with different 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) to dioleoylphosphatidylethanolamine (DOPE) weight ratios were investigated, that is, weight ratios 1:0 (T1P0), 3:1 (T3P1), 1:1 (T1P1), and 1:3 (T1P3). Mean sizes of liposomes were influenced by their lipid composition and the preparation concentration at the time of sonication. Zeta potentials of liposomes were inversely correlated with their liposome sizes. However, neither liposome sizes nor zeta potentials were correlated with transfection efficiency. The optimum composition of liposomes was cell-line dependent (T1P0 and T3P1 for Huh7 and AGS, T3P1 and T1P1 for COS7, and T1P1 and T1P3 for A549). The shape of lipoplexes was changed from lamellar to inverted hexagonal structure according to the increased ratio of DOPE, but there was no definite advantage of specific structure in transfection efficiency throughout all used cell lines. However, cellular internalization was consistently faster in T1P0, T3P1, T1P1 compared to T1P3 in all cell lines, suggesting the importance of endosomal escape. Our findings show that the transfection efficiency of DOTAP liposomes is mainly influenced by lipid composition and cell type, and not by size or zeta potential.


Assuntos
DNA/genética , Ácidos Graxos Monoinsaturados/química , Lipossomos/química , Neoplasias Experimentais/genética , Fosfatidiletanolaminas/química , Compostos de Amônio Quaternário/química , Transfecção/métodos , Animais , Células COS , Chlorocebus aethiops , DNA/administração & dosagem , Difusão , Humanos , Teste de Materiais , Neoplasias Experimentais/química
18.
Biophys J ; 107(8): 1939-1949, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25418175

RESUMO

Amyloid fibrillation in water-organic mixtures has been widely studied to understand the effect of protein-solvent interactions on the fibrillation process. In this study, we monitored insulin fibrillation in formamide and its methyl derivatives (formamide, N-methyl formamide, N,N-dimethyl formamide) in the presence and absence of water. These model solvent systems mimic the cellular environment by providing denaturing conditions and a hydrophobic environment with limited water content. Thioflavin T (ThT) assay revealed that binary mixtures of water with formamide and its methyl derivatives enhanced fibrillation rates and ?-sheet abundance, whereas organic solvents suppressed insulin fibrillation. We utilized solution small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC) to investigate the correlation between protein-solvent interactions and insulin fibrillation. SAXS experiments combined with simulated annealing of the protein indicated that the degree of denaturation of the hydrophobic core region at residues B11-B17 determines the fibrillation rate. In addition, DSC experiments suggested a crucial role of hydrophobic interactions in the fibrillation process. These results imply that an environment with limited water, which imitates a lipid membrane system, accelerates protein denaturation and the formation of intermolecular hydrophobic interactions during amyloid fibrillation.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Insulina/química , Agregação Patológica de Proteínas , Sequência de Aminoácidos , Metilação , Dados de Sequência Molecular , Desnaturação Proteica , Estrutura Terciária de Proteína , Água/química
19.
Anal Chem ; 86(3): 1909-16, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24383916

RESUMO

α-Synuclein (α-Syn) is an intrinsically disordered protein, whose fibrillar aggregates are associated with the pathogenesis of Parkinson's disease. α-Syn associates with lipid membranes and forms helical structures upon membrane binding. In this study, we explored the helix formation of α-Syn in solution containing trifluoroethanol using small-angle X-ray scattering and electrospray ionization ion mobility mass spectrometry. We then investigated the structural transitions of α-Syn to helical structures via association with large unilamellar vesicles as model lipid membrane systems. Hydrogen-deuterium exchange combined with electrospray ionization mass spectrometry was further utilized to understand the details of the regional interaction mechanisms of α-Syn with lipid vesicles based on the polarity of the lipid head groups. The characteristics of the helical structures were observed with α-Syn by adsorption onto the anionic phospholipid vesicles via electrostatic interactions between the N-terminal region of the protein and the anionic head groups of the lipids. α-Syn also associates with zwitterionic lipid vesicles and forms helical structures via hydrophobic interactions. These experimental observations provide an improved understanding of the distinct structural change mechanisms of α-Syn that originate from different regional interactions of the protein with lipid membranes and subsequently provide implications regarding diverse protein-membrane interactions related to their fibrillation kinetics.


Assuntos
Membrana Celular/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Membrana Celular/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
20.
Biomacromolecules ; 15(6): 2138-45, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24779590

RESUMO

We explore here the possibility that polypeptide chains with directional multiplicity might provide for the control of peptide self-assembly processes. We tested this new possibility using an oppositely directed peptide (ODP) supramolecular system. The ODP could make it possible to form a ßαß motif with antiparallel ß-sheets, which does not exist in nature. Furthermore, the designed ODPs were able to self-assemble into discrete, homogeneous, and structured protein-like controlled nano-objects. ODPs represent a simple but powerful unnatural self-assembling peptide system that can become a basic scaffold for fabricating more complex and elaborate artificial nanostructures.


Assuntos
Nanotecnologia/métodos , Peptídeos/química , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA