Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Biol ; 18(1): 52, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32408895

RESUMO

BACKGROUND: Identifying causal variants and genes from human genetic studies of hematopoietic traits is important to enumerate basic regulatory mechanisms underlying these traits, and could ultimately augment translational efforts to generate platelets and/or red blood cells in vitro. To identify putative causal genes from these data, we performed computational modeling using available genome-wide association datasets for platelet and red blood cell traits. RESULTS: Our model identified a joint collection of genomic features enriched at established trait associations and plausible candidate variants. Additional studies associating variation at these loci with change in gene expression highlighted Tropomyosin 1 (TPM1) among our top-ranked candidate genes. CRISPR/Cas9-mediated TPM1 knockout in human induced pluripotent stem cells (iPSCs) enhanced hematopoietic progenitor development, increasing total megakaryocyte and erythroid cell yields. CONCLUSIONS: Our findings may help explain human genetic associations and identify a novel genetic strategy to enhance in vitro hematopoiesis. A similar trait-specific gene prioritization strategy could be employed to help streamline functional validation experiments for virtually any human trait.


Assuntos
Plaquetas/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Tropomiosina/metabolismo , Sistemas CRISPR-Cas , Estudo de Associação Genômica Ampla , Humanos , Técnicas In Vitro , Tropomiosina/deficiência
2.
Hum Mol Genet ; 25(22): 4939-4950, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28171541

RESUMO

Substantial variability exists in the presentation of complex neurological disorders, and the study of single nucleotide polymorphisms (SNPs) has shed light on disease mechanisms and pathophysiological variability in some cases. However, the vast majority of disease-linked SNPs have unidentified pathophysiological relevance. Here, we tested the hypothesis that SNPs within the miRNA recognition element (MRE; the region of the target transcript to which the miRNA binds) can impart changes in the expression of those genes, either by enhancing or reducing transcript and protein levels. To test this, we cross-referenced 7,153 miRNA-MRE brain interactions with the SNP database (dbSNP) to identify candidates, and functionally assessed 24 SNPs located in the 3'UTR or the coding sequence (CDS) of targets. For over half of the candidates tested, SNPs either enhanced (4 genes) or disrupted (10 genes) miRNA binding and target regulation. Additionally, SNPs causing a shift from a common to rare codon within the CDS facilitated miRNA binding downstream of the SNP, dramatically repressing target gene expression. The biological activity of the SNPs on miRNA regulation was also confirmed in induced pluripotent stem cell (iPSC) lines. These studies strongly support the notion that SNPs in the 3'UTR or the coding sequence of disease-relevant genes may be important in disease pathogenesis and should be reconsidered as candidate modifiers.


Assuntos
Encéfalo/fisiologia , Regulação da Expressão Gênica , MicroRNAs/genética , Regiões 3' não Traduzidas , Sítios de Ligação , Encéfalo/metabolismo , Bases de Dados Genéticas , Células HEK293 , Humanos , MicroRNAs/metabolismo , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , Motivos de Ligação ao RNA
3.
Epigenetics ; 16(12): 1295-1305, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33300436

RESUMO

Genomic imprinting is a rare form of gene expression in mammals in which a small number of genes are expressed in a parent-of-origin-specific manner. The aetiology of human imprinting disorders is diverse and includes chromosomal abnormalities, mutations, and epigenetic dysregulation of imprinted genes. The most common human imprinting disorder is Beckwith-Wiedemann syndrome (BWS), frequently caused by uniparental isodisomy and DNA methylation alterations. Because these lesions cannot be easily engineered, induced pluripotent stem cells (iPSC) are a compelling alternative. Here, we describe the first iPSC model derived from patients with BWS. Due to the mosaic nature of BWS patients, both BWS and non-BWS iPSC lines were derived from the same patient's fibroblasts. Importantly, we determine that DNA methylation and gene expression patterns of the imprinted region in the iPSC lines reflect the parental cells and are stable over time. Additionally, we demonstrate that differential expression in insulin signalling, cell proliferation, and cell cycle pathways was seen in hepatocyte lineages derived from BWS lines compared to controls. Thus, this cell based-model can be used to investigate the role of imprinting in the pathogenesis of BWS in disease-relevant cell types.


Assuntos
Síndrome de Beckwith-Wiedemann , Síndrome de Beckwith-Wiedemann/genética , Metilação de DNA , Impressão Genômica , Humanos , Mutação
4.
Stem Cell Res ; 49: 102084, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33202304

RESUMO

The CHOPWT4 iPSC line was generated as a control for applications such as differentiation analyses to the three germ layers and derivative tissues. Human foreskin fibroblasts were reprogrammed using the non-integrating Sendai virus expressing Oct3/4, Sox2, c-myc, and Klf4.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Células Epiteliais , Fibroblastos , Prepúcio do Pênis , Humanos , Fator 4 Semelhante a Kruppel , Masculino
5.
Stem Cell Res ; 16(2): 338-41, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27345999

RESUMO

The CHOPWT10 iPS cell line was generated to be used as a control for applications such as in differentiation analyses to the three germ layers and derivative tissues. Peripheral blood mononuclear cells (PBMCs) obtained from a healthy adult male were reprogrammed using the non-integrating Sendai virus expressing Oct3/4, Sox2, c-Myc, and Klf4.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Leucócitos Mononucleares/citologia , Adulto , Diferenciação Celular , Células Cultivadas , Reprogramação Celular , Corpos Embrioides/citologia , Citometria de Fluxo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Cariótipo , Fator 4 Semelhante a Kruppel , Masculino , Microscopia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Cell Stem Cell ; 18(1): 73-78, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26607381

RESUMO

Multipotent and pluripotent stem cells are potential sources for cell and tissue replacement therapies. For example, stem cell-derived red blood cells (RBCs) are a potential alternative to donated blood, but yield and quality remain a challenge. Here, we show that application of insight from human population genetic studies can enhance RBC production from stem cells. The SH2B3 gene encodes a negative regulator of cytokine signaling and naturally occurring loss-of-function variants in this gene increase RBC counts in vivo. Targeted suppression of SH2B3 in primary human hematopoietic stem and progenitor cells enhanced the maturation and overall yield of in-vitro-derived RBCs. Moreover, inactivation of SH2B3 by CRISPR/Cas9 genome editing in human pluripotent stem cells allowed enhanced erythroid cell expansion with preserved differentiation. Our findings therefore highlight the potential for combining human genome variation studies with genome editing approaches to improve cell and tissue production for regenerative medicine.


Assuntos
Eritrócitos/citologia , Células-Tronco/citologia , Sistemas CRISPR-Cas , Diferenciação Celular , Citocinas/metabolismo , Células-Tronco Embrionárias/citologia , Sangue Fetal/citologia , Técnicas Genéticas , Variação Genética , Genoma Humano , Células-Tronco Hematopoéticas/citologia , Hemoglobinas/análise , Humanos , Mutação , Células-Tronco Pluripotentes/citologia , Medicina Regenerativa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA