Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 140(3): 308-10, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20144755

RESUMO

The tumor suppressor protein p53, a crucial player in the DNA damage response, is regulated in many ways, most notably through ubiquitination. In this issue, Yuan et al. (2010) identify the deubiquitinating protease USP10 as a new regulator of p53 in the DNA damage response and tumor development.


Assuntos
Reparo do DNA , Ubiquitina Tiolesterase/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação
2.
J Pathol ; 245(4): 433-444, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29732557

RESUMO

Malignant melanoma of the conjunctiva (CM) is an uncommon but potentially deadly disorder. Many malignancies show an increased activity of the epigenetic modifier enhancer of zeste homolog 2 (EZH2). We studied whether EZH2 is expressed in CM, and whether it may be a target for therapy in this malignancy. Immunohistochemical analysis showed that EZH2 protein expression was absent in normal conjunctival melanocytes and primary acquired melanosis, while EZH2 was highly expressed in 13 (50%) of 26 primary CM and seven (88%) of eight lymph node metastases. Increased expression was positively associated with tumour thickness (p =0.03). Next, we targeted EZH2 with specific inhibitors (GSK503 and UNC1999) or depleted EZH2 by stable shRNA knockdown in three primary CM cell lines. Both pharmacological and genetic inactivation of EZH2 inhibited cell growth and colony formation and influenced EZH2-mediated gene transcription and cell cycle profile in vitro. The tumour suppressor gene p21/CDKN1A was especially upregulated in CM cells after EZH2 knockdown in CM cells. Additionally, the potency of GSK503 against CM cells was monitored in zebrafish xenografts. GSK503 profoundly attenuated tumour growth in CM xenografts at a well-tolerated concentration. Our results indicate that elevated levels of EZH2 are relevant to CM tumourigenesis and progression, and that EZH2 may become a potential therapeutic target for patients with CM. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Túnica Conjuntiva/tratamento farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Melanoma/tratamento farmacológico , Piridonas/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Neoplasias da Túnica Conjuntiva/genética , Neoplasias da Túnica Conjuntiva/metabolismo , Neoplasias da Túnica Conjuntiva/patologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Melanoma/genética , Melanoma/metabolismo , Melanoma/secundário , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem , Peixe-Zebra
3.
J Biol Chem ; 292(52): 21282-21290, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29150442

RESUMO

Epithelioid hemangioma is a locally aggressive vascular neoplasm, found in bones and soft tissue, whose cause is currently unknown, but may involve oncogene activation. FOS is one of the earliest viral oncogenes to be characterized, and normal cellular FOS forms part of the activator protein 1 (AP-1) transcription factor complex, which plays a pivotal role in cell growth, differentiation, and survival as well as the DNA damage response. Despite this, a causal link between aberrant FOS function and naturally occurring tumors has not yet been established. Here, we describe a thorough molecular and biochemical analysis of a mutant FOS protein we identified in these vascular tumors. The mutant protein lacks a highly conserved helix consisting of the C-terminal four amino acids of FOS, which we show is indispensable for fast, ubiquitin-independent FOS degradation via the 20S proteasome. Our work reveals that FOS stimulates endothelial sprouting and that perturbation of normal FOS degradation could account for the abnormal vessel growth typical of epithelioid hemangioma. To the best of our knowledge, this is the first functional characterization of mutant FOS proteins found in tumors.


Assuntos
Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/fisiologia , Neoplasias Vasculares/genética , Indutores da Angiogênese , Carcinogênese/genética , Carcinogênese/metabolismo , Diferenciação Celular , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica/genética , Genes fos/genética , Hemangioma/genética , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Elementos Reguladores de Transcrição/genética , Neoplasias Vasculares/metabolismo
4.
BMC Cancer ; 17(1): 383, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28549419

RESUMO

BACKGROUND: Ewing sarcoma is an aggressive, highly metastatic primary bone and soft tissue tumor most frequently occurring in the bone of young adolescents. Patients, especially those diagnosed with a metastatic disease, have a poor overall survival. Chemokine receptor CXCR4 has a key pro-tumorigenic role in the tumor microenvironment of Ewing sarcoma and has been suggested to be involved in the increased metastatic propensity. Earlier studies on CXCR4 protein expression in Ewing sarcoma yielded contradictory results when compared to CXCR4 RNA expression studies. Previously, we demonstrated that CXCR4 expression could be detected in vivo using the fluorescently tagged CXCR4-specific peptide MSAP-Ac-TZ14011. Therefore, we studied the membranous CXCR4 expression in Ewing sarcoma cell lines using MSAP-Ac-TZ14011. METHODS: The CXCR4 membrane expression levels were studied in EWS cell lines by flow cytometry using the hybrid peptide MSAP-Ac-TZ14011 and were correlated to CXCR4 RNA expression levels. The measurements were compared to levels detected using the CXCR4 antibody ab2074 under various cell preparation conditions. In addition, the staining patterns were analyzed by confocal fluorescence microscopy over time. RESULTS: The hybrid peptide MSAP-Ac-TZ14011 levels showed a strong and better correlation of CXCR4 membrane expression with the CXCR4 RNA expression levels than observed with the anti-CXCR4 antibody ab2074. With the hybrid peptide MSAP-Ac-TZ14011 using live cell confocal microscopy CXCR4 membrane staining and internalization was detected and the signal intensity correlated well with CXCR4 mRNA expression levels. CONCLUSIONS: The fluorescently labeled CXCR4 targeting peptide-based method provides a reliable alternative to antibody staining to study the CXCR4 membrane expression in live cells using either flow cytometry or live cell fluorescence microscopy. The fluorescently tagged CXCR4 targeting peptide could enable in vivo detection of CXCR4 expression in Ewing sarcoma which may help to stratify cases for anti-CXCR4 therapy.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Ósseas , Receptores CXCR4/análise , Sarcoma de Ewing , Linhagem Celular Tumoral , Corantes Fluorescentes , Humanos , Imagem Óptica , Peptídeos
5.
J Pathol ; 233(4): 415-24, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24974828

RESUMO

Translocations involving ETS-transcription factors, most commonly leading to the EWSR1-FLI1 fusion protein, are the hallmark of Ewing sarcoma. Despite knowledge of this driving molecular event, an effective therapeutic strategy is lacking. To test potential treatment regimes, we established a novel Ewing sarcoma zebrafish engraftment model allowing time-effective, dynamic quantification of Ewing sarcoma progression and tumour burden in vivo, applicable for screening of single and combined compounds. In Ewing sarcoma the tumour-suppressor gene TP53 is commonly found to be wild-type, thus providing an attractive target for treatment. Here, we study TP53 wild-type (EW7, CADO-ES1 and TC32) and TP53-deleted (SK-N-MC) Ewing sarcoma cell lines to investigate the potentiating effect of p53 reactivation by Nutlin-3 on treatment with YK-4-279 to block transcriptional activity of EWSR1-FLI1 protein. Blocking EWSR1-FLI1 transcriptional activity reduced Ewing sarcoma tumour cell burden irrespective of TP53 status. We show that simultaneous YK-4-279 treatment with Nutlin-3 to stabilize p53 resulted in an additive inhibition of TP53 wild-type Ewing sarcoma cell burden, whilst not affecting TP53-deleted Ewing sarcoma cells. Improved inhibition of proliferation and migration by combinatorial treatment was confirmed in vivo by zebrafish engraftments. Mechanistically, both compounds together additively induced apoptosis of tumour cells in vivo by engaging distinct pathways. We propose reactivation of the p53 pathway in combination with complementary targeted therapy by EWSR1-FLI1 transcriptional activity disruption as a valuable strategy against p53 wild-type Ewing sarcoma.


Assuntos
Neoplasias Ósseas/prevenção & controle , Proteínas de Ligação a RNA/genética , Sarcoma de Ewing/prevenção & controle , Transcrição Gênica/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Proteínas de Peixe-Zebra/genética , Animais , Antineoplásicos/farmacologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/fisiopatologia , Linhagem Celular Tumoral , Células Cultivadas , Modelos Animais de Doenças , Sinergismo Farmacológico , Xenoenxertos , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Piperazinas/farmacologia , Proteína EWS de Ligação a RNA , Proteínas de Ligação a RNA/efeitos dos fármacos , Sarcoma de Ewing/genética , Sarcoma de Ewing/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Proteína Supressora de Tumor p53/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/efeitos dos fármacos
6.
Breast Cancer Res Treat ; 148(1): 7-18, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25257729

RESUMO

The p53 tumor suppressor protein is primarily known for its important role in tumor suppression. In addition, p53 affects tumor cell migration, invasion, and epithelial-mesenchymal transition (EMT); processes also regulated by the transforming growth factor-ß (TGF-ß) signaling pathway. Here, we investigated the role of p53 in breast tumor cell invasion, migration, and EMT and examined the interplay of p53 with TGF-ß3 in these processes. MCF-10A1 and MCF-10CA1a breast cancer cells were treated with Nutlin-3 and TGF-ß3, and the effects on tumor cell migration and invasion were studied in transwell and 3D spheroid invasion assays. The effects of Nutlin-3 and TGF-ß3 on EMT were examined in NMuMG cells. To identify genes involved in TGF-ß-induced invasion that are modulated by p53, a Human Tumor Metastasis-specific RT-PCR array was performed. Verification of EPHB2 regulation by TGF-ß3 and p53 was performed on breast cancer tumor cell lines. We demonstrate that p53 inhibits basal and TGF-ß3-induced invasion, migration, and EMT in normal breast epithelial and breast cancer cells. Pharmacological activation of p53 inhibited induction of several TGF-ß3 targets involved in TGF-ß3-induced tumor cell invasion, i.e., matrix metallo proteinase (MMP)2, MMP9, and integrin ß 3 . The ephrin-type B receptor 2 (EPHB2) gene was identified as a new TGF-ß target important for TGF-ß3-mediated invasion and migration, whose transcriptional activation by TGF-ß3 is also inhibited by p53. The results show an intricate interplay between p53 and TGF-ß3 whereby p53 inhibits the TGF-ß3-induced expression of genes, e.g., EPHB2, to impede tumor cell invasion and migration.


Assuntos
Neoplasias da Mama/genética , Invasividade Neoplásica/genética , Receptor EphB2/genética , Fator de Crescimento Transformador beta3/genética , Proteína Supressora de Tumor p53/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Transfecção
7.
Curr Opin Oncol ; 26(1): 114-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24275854

RESUMO

PURPOSE OF REVIEW: Targeted therapy of malignant melanoma recently experienced remarkable advances with gene mutation-based therapies with signaling pathway inhibitors (kinase inhibitors). The treatments prolong patients' survival, but in general resistance is acquired and progression of disease occurs. Therefore, additional therapeutic targets are desperately needed. RECENT FINDINGS: The p53 tumor suppressor gene is rarely mutated in melanoma, but its functional attenuation is needed for tumor development. Recently, it was found that the essential p53 inhibitor Mdmx is very frequently overexpressed in melanoma. Mdmx displays both p53-dependent and p53-independent oncogenic effects needed for melanoma growth SUMMARY: Current melanoma therapy based upon kinase inhibitors shows robust initial clinical effect, but the duration of effect is limited. Inactivation of Mdmx in melanoma inhibits tumor growth also of kinase-inhibitor-resistant tumors. An observed synergistic effect of kinase-inhibition and Mdmx targeting can lead to better and more durable treatment of melanoma patients.


Assuntos
Antineoplásicos/uso terapêutico , Melanoma/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Proteína Supressora de Tumor p53/antagonistas & inibidores , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Melanoma/genética , Melanoma/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/fisiologia , Proteínas Repressoras/fisiologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo
8.
Melanoma Res ; 33(5): 345-356, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467061

RESUMO

Uveal melanoma is the most common intraocular tumor in adults, representing approximately 5% of all melanoma cases. Up to 50% of uveal melanoma patients develop metastases that are resistant to most of the commonly used antineoplastic treatments. Virtually all uveal melanoma tumors harbor activating mutations in GNAQ or GNA11 , encoding Gαq and Gα11, respectively. Constant activity of these proteins causes deregulation of multiple downstream signaling pathways including PKC, MAPK and YAP1/TAZ. While the importance of YAP1 signaling for the proliferation of uveal melanoma has recently been demonstrated, much less is known about the paralog of YAP1 transcriptional coactivator, named TAZ; however, similar to YAP1, TAZ is expected to be a therapeutic target in uveal melanoma. We performed a small-scale drug screen to discover a compound synergistically inhibiting uveal melanoma proliferation/survival in combination with YAP1/TAZ inhibition. We found that the combination of genetic depletion of YAP1/TAZ together with Mcl-1 inhibition demonstrates a synergistic inhibitory effect on the viability of uveal melanoma cell lines. Similarly, indirect attenuation of the YAP1/TAZ signaling pathway with an inhibitor of the mevalonate pathway, that is, the geranyl-geranyl transferase inhibitor GGTI-298, synergizes with Mcl-1 inhibition. This combination could be potentially used as a treatment for metastatic uveal melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Neoplasias Uveais , Adulto , Humanos , Linhagem Celular Tumoral , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Neoplasias Uveais/genética
9.
Cell Death Discov ; 9(1): 183, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37321991

RESUMO

Uveal melanoma (UM) has a high risk to progress to metastatic disease with a median survival of 3.9 months after metastases detection, as metastatic UM responds poorly to conventional and targeted chemotherapy and is largely refractory to immunotherapy. Here, we present a patient-derived zebrafish UM xenograft model mimicking metastatic UM. Cells isolated from Xmm66 spheroids derived from metastatic UM patient material were injected into 2 days-old zebrafish larvae resulting in micro-metastases in the liver and caudal hematopoietic tissue. Metastasis formation could be reduced by navitoclax and more efficiently by the combinations navitoclax/everolimus and flavopiridol/quisinostat. We obtained spheroid cultures from 14 metastatic and 10 primary UM tissues, which were used for xenografts with a success rate of 100%. Importantly, the ferroptosis-related genes GPX4 and SLC7A11 are negatively correlated with the survival of UM patients (TCGA: n = 80; Leiden University Medical Centre cohort: n = 64), ferroptosis susceptibility is correlated with loss of BAP1, one of the key prognosticators for metastatic UM, and ferroptosis induction greatly reduced metastasis formation in the UM xenograft model. Collectively, we have established a patient-derived animal model for metastatic UM and identified ferroptosis induction as a possible therapeutic strategy for the treatment of UM patients.

10.
Cancers (Basel) ; 15(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37190207

RESUMO

Uveal Melanoma (UM) is a rare and malignant intraocular tumor with dismal prognosis. Even if radiation or surgery permit an efficient control of the primary tumor, up to 50% of patients subsequently develop metastases, mainly in the liver. The treatment of UM metastases is challenging and the patient survival is very poor. The most recurrent event in UM is the activation of Gαq signaling induced by mutations in GNAQ/11. These mutations activate downstream effectors including protein kinase C (PKC) and mitogen-activated protein kinases (MAPK). Clinical trials with inhibitors of these targets have not demonstrated a survival benefit for patients with UM metastasis. Recently, it has been shown that GNAQ promotes YAP activation through the focal adhesion kinase (FAK). Pharmacological inhibition of MEK and FAK showed remarkable synergistic growth-inhibitory effects in UM both in vitro and in vivo. In this study, we have evaluated the synergy of the FAK inhibitor with a series of inhibitors targeting recognized UM deregulated pathways in a panel of cell lines. The combined inhibition of FAK and MEK or PKC had highly synergistic effects by reducing cell viability and inducing apoptosis. Furthermore, we demonstrated that these combinations exert a remarkable in vivo activity in UM patient-derived xenografts. Our study confirms the previously described synergy of the dual inhibition of FAK and MEK and identifies a novel combination of drugs (FAK and PKC inhibitors) as a promising strategy for therapeutic intervention in metastatic UM.

11.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37111355

RESUMO

Uveal melanoma (UM) is a rare malignant cancer of the eye, with up to 50% of patients dying from metastasis, for which no effective treatment is available. Due to the rarity of the disease, there is a great need to harness the limited material available from primary tumors and metastases for advanced research and preclinical drug screening. We established a platform to isolate, preserve, and transiently recover viable tissues, followed by the generation of spheroid cultures derived from primary UM. All assessed tumor-derived samples formed spheroids in culture within 24 h and stained positive for melanocyte-specific markers, indicating the retention of their melanocytic origin. These short-lived spheroids were only maintained for the duration of the experiment (7 days) or re-established from frozen tumor tissue acquired from the same patient. Intravenous injection of fluorescently labeled UM cells derived from these spheroids into zebrafish yielded a reproducible metastatic phenotype and recapitulated molecular features of the disseminating UM. This approach allowed for the experimental replications required for reliable drug screening (at least 2 individual biological experiments, with n > 20). Drug treatments with navitoclax and everolimus validated the zebrafish patient-derived model as a versatile preclinical tool for screening anti-UM drugs and as a preclinical platform to predict personalized drug responses.

12.
Nature ; 444(7115): 61-6, 2006 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17080083

RESUMO

Most human tumours have genetic mutations in their Rb and p53 pathways, but retinoblastoma is thought to be an exception. Studies suggest that retinoblastomas, which initiate with mutations in the gene retinoblastoma 1 (RB1), bypass the p53 pathway because they arise from intrinsically death-resistant cells during retinal development. In contrast to this prevailing theory, here we show that the tumour surveillance pathway mediated by Arf, MDM2, MDMX and p53 is activated after loss of RB1 during retinogenesis. RB1-deficient retinoblasts undergo p53-mediated apoptosis and exit the cell cycle. Subsequently, amplification of the MDMX gene and increased expression of MDMX protein are strongly selected for during tumour progression as a mechanism to suppress the p53 response in RB1-deficient retinal cells. Our data provide evidence that the p53 pathway is inactivated in retinoblastoma and that this cancer does not originate from intrinsically death-resistant cells as previously thought. In addition, they support the idea that MDMX is a specific chemotherapeutic target for treating retinoblastoma.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas de Ciclo Celular , Morte Celular , Divisão Celular , Dano ao DNA , Amplificação de Genes/genética , Humanos , Imidazóis/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Piperazinas/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Ratos , Ratos Sprague-Dawley , Retina/metabolismo , Retinoblastoma/genética , Retinoblastoma/patologia , Proteína do Retinoblastoma/deficiência , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p14ARF/metabolismo
13.
Cancers (Basel) ; 14(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35804957

RESUMO

Currently, no systemic treatment is approved as the standard of care for metastatic uveal melanoma (UM). mTOR has been evaluated as a drug target in UM. However, one of the main limitations is dose reduction due to adverse effects. The combination of everolimus with another targeted agent would allow the reduction of the dose of a single drug, thus widening the therapeutic window. In our study, we aimed to identify a synergistic combination with everolimus in order to develop a novel treatment option for metastatic UM. We exploited CRISPR-Cas9 synthetic lethality screening technology to search for an efficient combination. IGF1R and PRKDC and several other genes were identified as hits in the screen. We investigated the effect of the combination of everolimus with the inhibitors targeting IGF1R and DNA-PKcs on the survival of UM cell lines. These combinations synergistically slowed down cell growth but did not induce apoptosis in UM cell lines. These combinations were tested on PDX UM in an in vivo model, but we could not detect tumor regression. However, we could find significant activity of the dual DNA-PKcs/mTOR inhibitor CC-115 on PDX UM in the in vivo model.

14.
Cancers (Basel) ; 14(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139642

RESUMO

The tumor suppressor protein p53 has an important role in cell-fate determination. In cancer cells, the activity of p53 is frequently repressed by high levels of MDMX and/or MDM2. MDM2 is a ubiquitin ligase whose activity results in ubiquitin- and proteasome-dependent p53 degradation, while MDMX inhibits p53-activated transcription by shielding the p53 transactivation domain. Interestingly, the oncogenic functions of MDMX appear to be more wide-spread than inhibition of p53. The present study aimed to elucidate the MDMX-controlled transcriptome. Therefore, we depleted MDMX with four distinct shRNAs from a high MDMX expressing uveal melanoma cell line and determined the effect on the transcriptome by RNAseq. Biological function analyses indicate the inhibition of the cell cycle regulatory genes and stimulation of cell death activating genes upon MDMX depletion. Although the inhibition of p53 activity clearly contributes to the transcription regulation controlled by MDMX, it appeared that the transcriptional regulation of multiple genes did not only rely on p53 expression. Analysis of gene regulatory networks indicated a role for Forkhead box (FOX) transcription factors. Depletion of FOXO proteins partly prevented the transcriptional changes upon MDMX depletion. Furthermore, depletion of FOXO proteins relatively diminished the growth inhibition upon MDMX knockdown, although the knockdown of the FOXO transcription factors also reduces cell growth. In conclusion, the p53-independent oncogenic functions of MDMX could be partially explained by its regulation of FOXO activity.

15.
Invest Ophthalmol Vis Sci ; 63(13): 14, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515935

RESUMO

Purpose: Uveal melanoma (UM) is considered a rare disease; yet, it is the most common intraocular malignancy in adults. Although the primary tumor may be efficiently managed, more than 50% of patients with UM develop distant metastases. The mortality at the first year after diagnosis of metastatic UM has been estimated at 81%, and the poor prognosis has not improved in the past years due to the lack of effective therapies. Methods: In order to search for novel therapeutic possibilities for metastatic UM, we performed a small-scale screen of targeted drug combinations. We verified the targets of the tested compounds by western blotting and PCR and clarified the mechanism of action of the selected combinations by caspase 3 and 7 activity assay and flow cytometry. The best two combinations were tested in a mouse patient-derived xenograft (PDX) UM model as putative therapeutics for metastatic UM. Results: Combinations of the multitarget drug trabectedin with either the CK2/CLK double-inhibitor CX-4945 (silmitasertib) or the c-MET/TAM (TYRO3, Axl, MERTK) receptor inhibitors foretinib and cabozantinib demonstrated synergistic effects and induced apoptosis (relative caspase 3 and 7 activity increased up to 20.5-fold in UM cell lines). In the case of the combination of foretinib and cabozantinib, inhibition of the TAM receptors, but not c-Met, was essential to inhibit the growth of UM cells. Monotreatment with trabectedin inhibited tumor growth by 42%, 49%, and 35% in the MM26, MM309, and MM339 PDX mouse models, respectively. Conclusions: Trabectedin alone or in combination with cabozantinib inhibited tumor growth in PDX UM mouse models. Blocking of MERTK, rather than TYRO3, activity inhibited UM cell growth and synergized with trabectedin.


Assuntos
Neoplasias Uveais , Humanos , Camundongos , Animais , Caspase 3/metabolismo , Trabectedina/uso terapêutico , c-Mer Tirosina Quinase , Linhagem Celular Tumoral , Neoplasias Uveais/patologia
16.
Cancers (Basel) ; 14(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36010941

RESUMO

Metastatic prostate cancer is a lethal disease in patients incapable of responding to therapeutic interventions. Invasive prostate cancer spread is caused by failure of the normal anti-cancer defense systems that are controlled by the tumour suppressor protein, p53. Upon mutation, p53 malfunctions. Therapeutic strategies to directly re-empower the growth-restrictive capacities of p53 in cancers have largely been unsuccessful, frequently because of a failure to discriminate responses in diseased and healthy tissues. Our studies sought alternative prostate cancer drivers, intending to uncover new treatment targets. We discovered the oncogenic potency of MDM4 in prostate cancer cells, both in the presence and absence of p53 and also its mutation. We uncovered that sustained depletion of MDM4 is growth inhibitory in prostate cancer cells, involving either apoptosis or senescence, depending on the cell and genetic context. We identified that the potency of MDM4 targeting could be potentiated in prostate cancers with mutant p53 through the addition of a first-in-class small molecule drug that was selected as a p53 reactivator and has the capacity to elevate oxidative stress in cancer cells to drive their death.

17.
J Biol Chem ; 285(38): 29111-27, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20659896

RESUMO

The p53 regulatory network is critically involved in preventing the initiation of cancer. In unstressed cells, p53 is maintained at low levels and is largely inactive, mainly through the action of its two essential negative regulators, HDM2 and HDMX. p53 abundance and activity are up-regulated in response to various stresses, including DNA damage and oncogene activation. Active p53 initiates transcriptional and transcription-independent programs that result in cell cycle arrest, cellular senescence, or apoptosis. p53 also activates transcription of HDM2, which initially leads to the degradation of HDMX, creating a positive feedback loop to obtain maximal activation of p53. Subsequently, when stress-induced post-translational modifications start to decline, HDM2 becomes effective in targeting p53 for degradation, thus attenuating the p53 response. To date, no clear function for HDMX in this critical attenuation phase has been demonstrated experimentally. Like HDM2, the HDMX gene contains a promoter (P2) in its first intron that is potentially inducible by p53. We show that p53 activation in response to a plethora of p53-activating agents induces the transcription of a novel HDMX mRNA transcript from the HDMX-P2 promoter. This mRNA is more efficiently translated than that expressed from the constitutive HDMX-P1 promoter, and it encodes a long form of HDMX protein, HDMX-L. Importantly, we demonstrate that HDMX-L cooperates with HDM2 to promote the ubiquitination of p53 and that p53-induced HDMX transcription from the P2 promoter can play a key role in the attenuation phase of the p53 response, to effectively diminish p53 abundance as cells recover from stress.


Assuntos
Íntrons/fisiologia , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Sítios de Ligação/genética , Sítios de Ligação/fisiologia , Western Blotting , Proteínas de Ciclo Celular , Linhagem Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Doxiciclina/farmacologia , Etoposídeo/farmacologia , Evolução Molecular , Humanos , Imidazóis/farmacologia , Íntrons/genética , Camundongos , Proteínas Nucleares/metabolismo , Piperazinas/farmacologia , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Proteína Supressora de Tumor p53/genética , Ubiquitinação
18.
J Biol Chem ; 285(14): 10786-96, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20080970

RESUMO

The p53 pathway is disrupted in virtually every human tumor. In approximately 50% of human cancers, the p53 gene is mutated, and in the remaining cancers, the pathway is dysregulated by genetic lesions in other genes that modulate the p53 pathway. One common mechanism for inactivation of the p53 pathway in tumors that express wild-type p53 is increased expression of MDM2 or MDMX. MDM2 and MDMX bind p53 and inhibit its function by distinct nonredundant mechanisms. Small molecule inhibitors and small peptides have been developed that bind MDM2 in the p53-binding pocket and displace the p53 protein, leading to p53-mediated cell cycle exit and apoptosis. To date, peptide inhibitors of MDMX have been developed, but no small molecule inhibitors have been reported. We have developed biochemical and cell-based assays for high throughput screening of chemical libraries to identify MDMX inhibitors and identified the first MDMX inhibitor SJ-172550. This compound binds reversibly to MDMX and effectively kills retinoblastoma cells in which the expression of MDMX is amplified. The effect of SJ-172550 is additive when combined with an MDM2 inhibitor. Results from a series of biochemical and structural modeling studies suggest that SJ-172550 binds the p53-binding pocket of MDMX, thereby displacing p53. This lead compound is a useful chemical scaffold for further optimization of MDMX inhibitors that may eventually be used to treat pediatric cancers and various adult tumors that overexpress MDMX or have similar genetic lesions. When combined with selective MDM2 inhibitors, SJ-172550 may also be useful for treating tumors that express wild-type p53.


Assuntos
Acetatos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Pirazóis/farmacologia , Retinoblastoma/tratamento farmacológico , Retinoblastoma/patologia , Animais , Linhagem Celular Tumoral , Simulação por Computador , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Retinoblastoma/metabolismo , Bibliotecas de Moléculas Pequenas , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo
19.
Mol Cancer ; 10: 111, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21910853

RESUMO

BACKGROUND: In around 50% of all human cancers the tumor suppressor p53 is mutated. It is generally assumed that in the remaining tumors the wild-type p53 protein is functionally impaired. The two main inhibitors of p53, hMDM2 (MDM2) and hMDMX (MDMX/MDM4) are frequently overexpressed in wild-type p53 tumors. Whereas the main activity of hMDM2 is to degrade p53 protein, its close homolog hMDMX does not degrade p53, but it represses its transcriptional activity. Here we study the role of hMDMX in the neoplastic transformation of human fibroblasts and embryonic retinoblasts, since a high number of retinoblastomas contain elevated hMDMX levels. METHODS: We made use of an in vitro transformation model using a retroviral system of RNA interference and gene overexpression in primary human fibroblasts and embryonic retinoblasts. Consecutive knockdown of RB and p53, overexpression of SV40-small t, oncogenic HRasV12 and HA-hMDMX resulted in a number of stable cell lines representing different stages of the transformation process, enabling a comparison between loss of p53 and hMDMX overexpression. The cell lines were tested in various assays to assess their oncogenic potential. RESULTS: Both p53-knockdown and hMDMX overexpression accelerated proliferation and prevented growth suppression induced by introduction of oncogenic Ras, which was required for anchorage-independent growth and the ability to form tumors in vivo. Furthermore, we found that hMDMX overexpression represses basal p53 activity to some extent. Transformed fibroblasts with very high levels of hMDMX became largely resistant to the p53 reactivating drug Nutlin-3. The Nutlin-3 response of hMDMX transformed retinoblasts was intact and resembled that of retinoblastoma cell lines. CONCLUSIONS: Our studies show that hMDMX has the essential properties of an oncogene. Its constitutive expression contributes to the oncogenic phenotype of transformed human cells. Its main function appears to be p53 inactivation. Therefore, developing new drugs targeting hMDMX is a valid approach to obtain new treatments for a subset of human tumors expressing wild-type p53.


Assuntos
Transformação Celular Neoplásica/patologia , Fibroblastos/patologia , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Recombinantes/metabolismo , Retina/patologia , Animais , Adesão Celular , Proteínas de Ciclo Celular , Proliferação de Células , Forma Celular , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Embrião de Galinha , Membrana Corioalantoide/patologia , Fibroblastos/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Imidazóis/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Transplante de Neoplasias , Oncogenes , Piperazinas/metabolismo , Cultura Primária de Células , Retina/embriologia , Retina/metabolismo , Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo
20.
J Biomed Biotechnol ; 2011: 876173, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21541195

RESUMO

The MDM family proteins MDM2 and MDMX are two critical regulators of the p53 tumor suppressor protein. Expression of both proteins is necessary for allowing the embryonal development by keeping the activity of p53 in check. Upon stresses that need to activate p53 to perform its function as guardian of the genome, p53 has to be liberated from these two inhibitors. In this review, we will discuss the various mechanisms by which MDMX protein levels are downregulated upon various types of stress, including posttranslational modifications of the MDMX protein and the regulation of mdmx mRNA expression, including alternative splicing. In addition, the putative function(s) of the described MDMX splice variants, particularly in tumor development, will be discussed. Lastly, in contrast to common belief, we have recently shown the existence of a p53-MDMX feedback loop, which is important for dampening the p53-response at later phases after genotoxic stress.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Dano ao DNA , Humanos , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/genética , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA