Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Redox Biol ; 65: 102802, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37423162

RESUMO

Infectious diseases are a significant health burden for developing countries, particularly with the rise of multidrug resistance. There is an urgent need to elucidate the factors underlying the persistence of pathogens such as Mycobacterium tuberculosis, Plasmodium falciparum and Trypanosoma brucei. In contrast to host cells, these pathogens traverse multiple and varied redox environments during their infectious cycles, including exposure to high levels of host-derived reactive oxygen species. Pathogen antioxidant defenses such as the peroxiredoxin and thioredoxin systems play critical roles in the redox stress tolerance of these cells. However, many of the kinetic rate constants obtained for the pathogen peroxiredoxins are broadly similar to their mammalian homologs and therefore, their contributions to the redox tolerances within these cells are enigmatic. Using graph theoretical analysis, we show that compared to a canonical Escherichia coli redoxin network, pathogen redoxin networks contain unique network connections (motifs) between their thioredoxins and peroxiredoxins. Analysis of these motifs reveals that they increase the hydroperoxide reduction capacity of these networks and, in response to an oxidative insult, can distribute fluxes into specific thioredoxin-dependent pathways. Our results emphasize that the high oxidative stress tolerance of these pathogens depends on both the kinetic parameters for hydroperoxide reduction and the connectivity within their thioredoxin/peroxiredoxin systems.


Assuntos
Antioxidantes , Compostos de Sulfidrila , Animais , Antioxidantes/metabolismo , Compostos de Sulfidrila/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Peroxirredoxinas/metabolismo , Estresse Oxidativo , Tiorredoxinas/metabolismo , Mamíferos/metabolismo
2.
Redox Rep ; 26(1): 147-159, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34378494

RESUMO

OBJECTIVES: Synthetic biology has emerged from molecular biology and engineering approaches and aims to develop novel, biologically-inspired systems for industrial and basic research applications ranging from biocomputing to drug production. Surprisingly, redoxin (thioredoxin, glutaredoxin, peroxiredoxin) and other thiol-based redox systems have not been widely utilized in many of these synthetic biology applications. METHODS: We reviewed thiol-based redox systems and the development of synthetic biology applications that have used thiol-dependent parts. RESULTS: The development of circuits to facilitate cytoplasmic disulfide bonding, biocomputing and the treatment of intestinal bowel disease are amongst the applications that have used thiol-based parts. We propose that genetically encoded redox sensors, thiol-based biomaterials and intracellular hydrogen peroxide generators may also be valuable components for synthetic biology applications. DISCUSSION: Thiol-based systems play multiple roles in cellular redox metabolism, antioxidant defense and signaling and could therefore offer a vast and diverse portfolio of components, parts and devices for synthetic biology applications. However, factors limiting the adoption of redoxin systems for synthetic biology applications include the orthogonality of thiol-based components, limitations in the methods to characterize thiol-based systems and an incomplete understanding of the design principles of these systems.


Assuntos
Compostos de Sulfidrila , Biologia Sintética , Antioxidantes , Oxirredução , Peroxirredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA