Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 11(6): 1376-85, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19220400

RESUMO

The marine alphaproteobacterium Roseovarius nubinhibens ISM can produce the gas dimethyl sulfide (DMS) from dimethylsulfoniopropionate (DMSP), a widespread secondary metabolite that occurs in many phytoplankton. Roseovarius possesses a novel gene, termed dddP, which when cloned, confers on Escherichia coli the ability to produce DMS. The DddP polypeptide is in the large family of M24 metallopeptidases and is wholly different from two other enzymes, DddD and DddL, which were previously shown to generate DMS from dimethylsulfoniopropionate. Close homologues of DddP occur in other alphaproteobacteria and more surprisingly, in some Ascomycete fungi. These were the biotechnologically important Aspergillus oryzae and the plant pathogen, Fusarium graminearum. The dddP gene is abundant in the bacterial metagenomic sequences in the Global Ocean Sampling Expedition. Thus, dddP has several novel features and is widely dispersed, both taxonomically and geographically.


Assuntos
Metaloproteases/genética , Rhodobacteraceae/enzimologia , Sulfetos/metabolismo , Compostos de Sulfônio/metabolismo , Sequência de Aminoácidos , Ascomicetos/genética , Ascomicetos/metabolismo , Genes Bacterianos , Genes Fúngicos , Genoma Bacteriano , Geografia , Metaloproteases/metabolismo , Dados de Sequência Molecular , Oceanos e Mares , Rhodobacteraceae/genética , Água do Mar/química , Água do Mar/microbiologia
2.
Environ Microbiol ; 10(3): 757-67, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18237308

RESUMO

The alpha-proteobacterium Sulfitobacter EE-36 makes the gas dimethylsulfide (DMS) from dimethylsulfoniopropionate (DMSP), an abundant antistress molecule made by many marine phytoplankton. We screened a cosmid library of Sulfitobacter for clones that conferred to other bacteria the ability to make DMS. One gene, termed dddL, was sufficient for this phenotype when cloned in pET21a and introduced into Escherichia coli. Close DddL homologues exist in the marine alpha-proteobacteria Fulvimarina, Loktanella Oceanicola and Stappia, all of which made DMS when grown on DMSP. There was also a dddL homologue in Rhodobacter sphaeroides strain 2.4.1, but not in strain ATCC 17025; significantly, the former, but not the latter, emits DMS when grown with DMSP. Escherichia coli containing the cloned, overexpressed dddL genes of R. sphaeroides 2.4.1 and Sulfitobacter could convert DMSP to acrylate plus DMS. This is the first identification of such a 'DMSP lyase'. Thus, DMS can be made either by this DddL lyase or by a DMSP acyl CoA transferase, specified by dddD, a gene that we had identified in several other marine bacteria.


Assuntos
Alphaproteobacteria/metabolismo , Liases de Carbono-Enxofre/metabolismo , Clima , Genes Bacterianos , Rhodobacter sphaeroides/enzimologia , Sulfetos/metabolismo , Alphaproteobacteria/genética , Alphaproteobacteria/crescimento & desenvolvimento , Rhodobacter sphaeroides/crescimento & desenvolvimento , Rhodobacter sphaeroides/isolamento & purificação , Sulfetos/farmacologia
3.
Mol Plant Microbe Interact ; 15(1): 69-74, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11858173

RESUMO

An operon with homology to the dppABCDF genes required to transport dipeptides in bacteria was identified in the N2-fixing symbiont, Rhizobium leguminosarum. As in other bacteria, dpp mutants were severely affected in the import of delta-aminolevulinic acid (ALA), a heme precursor. ALA uptake was antagonized by adding dipeptides, indicating that these two classes of molecule share the same transporter. Mutations in dppABCDF did not affect symbiotic N2 fixation on peas, suggesting that the ALA needed for heme synthesis is not supplied by the plant or that another uptake system functions in the bacteroids. The dppABCDF operon of R. leguminosarum resembles that in other bacteria, with a gap between dppA and dppB containing inverted repeats that may stabilize mRNA and may explain why transcription of dppA alone was higher than that of dppBCDF. The dppABCDF promoter was mapped and is most likely recognized by sigma70.


Assuntos
Ácido Aminolevulínico/metabolismo , Proteínas de Transporte , Proteínas de Escherichia coli , Óperon , Proteínas Periplásmicas de Ligação , Rhizobium leguminosarum/genética , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Sequência de Bases , Transporte Biológico , Dipeptídeos/farmacologia , Genes Bacterianos , Genótipo , Heme/metabolismo , Dados de Sequência Molecular , Mutagênese , Filogenia , RNA Mensageiro/genética , Mapeamento por Restrição , Rhizobium leguminosarum/efeitos dos fármacos , Rhizobium leguminosarum/metabolismo , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
4.
Microbiology (Reading) ; 150(Pt 12): 4065-74, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15583159

RESUMO

Mutations in rirA of Rhizobium have been shown to deregulate expression of several genes that are normally repressed by iron. A conserved sequence, the iron-responsive operator (IRO), was identified near promoters of vbsC (involved in the synthesis of the siderophore vicibactin), rpoI (specifies an ECF sigma factor needed for vicibactin synthesis) and the two fhuA genes (encoding vicibactin receptor). Removal of these IRO sequences abolished Fe-responsive repression. Most of these genes were constitutively expressed in the heterologous host, Paracoccus denitrificans, but introduction of the cloned rirA gene repressed expression of these Rhizobium genes in this heterologous host if the corresponding IRO sequences were also intact. These observations are the first to examine the mechanisms of RirA, which has no sequence similarity to well-known iron-responsive regulators such as Fur or DtxR. They provide strong circumstantial evidence that RirA is a transcriptional regulator that binds to cis-acting regulatory sequences near the promoters of at least some of the genes whose expression it controls in response to Fe availability.


Assuntos
Proteínas de Bactérias/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Regiões Operadoras Genéticas , Rhizobium/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Peptídeos Cíclicos/biossíntese , Regiões Promotoras Genéticas , Rhizobium/genética
5.
Microbiology (Reading) ; 150(Pt 5): 1447-1456, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15133106

RESUMO

In wild-type Rhizobium leguminosarum, the sitABCD operon specifies a Mn(2+) transporter whose expression is severely reduced in cells grown in the presence of this metal. Mutations in the R. leguminosarum gene, mur (manganese uptake regulator), whose product resembles the Fur transcriptional regulator, cause high-level expression of sitABCD in the presence of Mn(2+). In gel-shift mobility assays, purified R. leguminosarum Mur protein bound to at least two regions near the sitABCD promoter region, although this DNA has no conventional consensus Fur-binding sequences (fur boxes). Thus, in contrast to gamma-proteobacteria, where Fur binds Fe(2+), the R. leguminosarum Fur homologue, Mur, act as a Mn(2)-responsive transcriptional regulator.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Regulação Bacteriana da Expressão Gênica , Manganês/metabolismo , Proteínas Repressoras/metabolismo , Rhizobium leguminosarum/metabolismo , Sequência de Bases , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Ferro/metabolismo , Dados de Sequência Molecular , Óperon , Rhizobium leguminosarum/genética , Transcrição Gênica
6.
Microbiology (Reading) ; 149(Pt 5): 1357-1365, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12724397

RESUMO

Rhizobium leguminosarum fur mutants were unaffected in Fe-dependent regulation of several operons that specify different Fe uptake systems, yet cloned R. leguminosarum fur partially corrected an Escherichia coli fur mutant and R. leguminosarum Fur protein bound to canonical fur boxes. The lack of a phenotype in fur mutants is not due to functional redundancy with Irr, another member of the Fur superfamily found in the rhizobia, since irr fur double mutants are also unaffected in Fe-responsive regulation of several operons involved in Fe uptake. Neither Irr nor Fur is needed for symbiotic N(2) fixation on peas. As in Bradyrhizobium japonicum, irr mutants accumulated protoporphyrin IX. R. leguminosarum irr is not regulated by Fur and its Irr protein lacks the motif needed for haem-dependent post-translational modification that occurs in B. japonicum Irr. The similarities and differences in the Fur superfamily in the rhizobia and other Gram-negative bacteria are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Mutação , Proteínas Repressoras/metabolismo , Rhizobium leguminosarum/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/genética , Fixação de Nitrogênio , Pisum sativum/microbiologia , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/crescimento & desenvolvimento , Simbiose , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
7.
Biochem Soc Trans ; 30(4): 771-4, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12196192

RESUMO

The X-ray crystal structure of the apo-form of the Fur protein from Rhizobium leguminosarum has been solved at 2.7 A resolution. Small-angle X-ray scattering was used to give information on the solution conformation of the protein. The Fur homodimer folds into two domains. The N-terminal domain is formed from the packing of two helix-turn-helix motifs while the C-terminal domain appears primarily to stabilize the dimeric state of the protein.


Assuntos
Proteínas de Bactérias/química , Ferro/metabolismo , Proteínas Repressoras/química , Rhizobium leguminosarum/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Metaloproteínas/química , Modelos Moleculares , Conformação Proteica
8.
Mol Microbiol ; 44(5): 1153-66, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12028377

RESUMO

A cluster of eight genes, vbsGSO, vbsADL, vbsC and vbsP, are involved in the synthesis of vicibactin, a cyclic, trihydroxamate siderophore made by the symbiotic bacterium Rhizobium leguminosarum. None of these vbs genes was required for symbiotic N2 fixation on peas or Vicia. Transcription of vbsC, vbsGSO and vbsADL (but not vbsP) was enhanced by growth in low levels of Fe. Transcription of vbsGSO and vbsADL, but not vbsP or vbsC, required the closely linked gene rpoI, which encodes an ECF sigma factor of RNA polymerase. Transfer of the cloned vbs genes, plus rpoI, to Rhodobacter, Paracoccus and Sinorhizobium conferred the ability to make vicibactin on these other genera. We present a biochemical genetic model of vicibactin synthesis, which accommodates the phenotypes of different vbs mutants and the homologies of the vbs gene products. In this model, VbsS, which is similar to many non-ribosomal peptide synthetase multienzymes, has a central role. It is proposed that VbsS activates L-N5-hydroxyornithine via covalent attachment as an acyl thioester to a peptidyl carrier protein domain. Subsequent VbsA-catalysed acylation of the hydroxyornithine, followed by VbsL-mediated epimerization and acetylation catalysed by VbsC, yields the vicibactin subunit, which is then trimerized and cyclized by the thioesterase domain of VbsS to give the completed siderophore.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos/genética , Peptídeos Cíclicos/genética , Rhizobium leguminosarum/genética , Fator sigma/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Ferro/metabolismo , Dados de Sequência Molecular , Estrutura Molecular , Família Multigênica , Mutação , Peptídeos Cíclicos/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Rhizobium leguminosarum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA