Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 19(6): e1010814, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37384781

RESUMO

Meta-diamides (e.g. broflanilide) and isoxazolines (e.g. fluralaner) are novel insecticides that target the resistant to dieldrin (RDL) subunit of insect γ-aminobutyric acid receptors (GABARs). In this study, we used in silico analysis to identify residues that are critical for the interaction between RDL and these insecticides. Substitution of glycine at the third position (G3') in the third transmembrane domain (TMD3) with methionine (G3'M TMD3), which is present in vertebrate GABARs, had the strongest effect on fluralaner binding. This was confirmed by expression of RDL from the rice stem borer, Chilo suppressalis (CsRDL) in oocytes of the African clawed frog, Xenopus laevis, where the G3'MTMD3 mutation almost abolished the antagonistic action of fluralaner. Subsequently, G3'MTMD3 was introduced into the Rdl gene of the fruit fly, Drosophila melanogaster, using the CRISPR/Cas9 system. Larvae of heterozygous lines bearing G3'MTMD3 did not show significant resistance to avermectin, fipronil, broflanilide, and fluralaner. However, larvae homozygous for G3'MTMD3 were highly resistant to broflanilide and fluralaner whilst still being sensitive to fipronil and avermectin. Also, homozygous lines showed severely impaired locomotivity and did not survive to the pupal stage, indicating a significant fitness cost associated with G3'MTMD3. Moreover, the M3'GTMD3 mutation in the mouse Mus musculus α1ß2 GABAR increased sensitivity to fluralaner. Taken together, these results provide convincing in vitro and in vivo evidence for both broflanilide and fluralaner acting on the same amino acid site, as well as insights into potential mechanisms leading to target-site resistance to these insecticides. In addition, our findings could guide further modification of isoxazolines to achieve higher selectivity for the control of insect pests with minimal effects on mammals.


Assuntos
Inseticidas , Receptores de GABA , Animais , Camundongos , Receptores de GABA/genética , Receptores de GABA/metabolismo , Dieldrin , Inseticidas/farmacologia , Inseticidas/química , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Larva/metabolismo , Mamíferos/metabolismo
2.
Nature ; 563(7732): 501-507, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30429615

RESUMO

Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector.


Assuntos
Aedes/genética , Infecções por Arbovirus/virologia , Arbovírus , Genoma de Inseto/genética , Genômica/normas , Controle de Insetos , Mosquitos Vetores/genética , Mosquitos Vetores/virologia , Aedes/virologia , Animais , Infecções por Arbovirus/transmissão , Arbovírus/isolamento & purificação , Variações do Número de Cópias de DNA/genética , Vírus da Dengue/isolamento & purificação , Feminino , Variação Genética/genética , Genética Populacional , Glutationa Transferase/genética , Resistência a Inseticidas/efeitos dos fármacos , Masculino , Anotação de Sequência Molecular , Família Multigênica/genética , Piretrinas/farmacologia , Padrões de Referência , Processos de Determinação Sexual/genética
3.
Med Vet Entomol ; 36(4): 424-434, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35593512

RESUMO

In Lao People's Democratic Republic, Aedes aegypti (Linnaeus 1762) and Aedes albopictus (Skuse 1894) mosquitoes (Diptera: Culicidae) are vectors of arboviral diseases such as dengue. As the treatment for these diseases is limited, control of the vectors with the use of pyrethroid insecticides is still essential. However, mutations in the voltage-gated sodium channel (vgsc) gene giving rise to pyrethroid resistance are threatening vector control programs. Here, we analysed both Ae. aegypti and Ae. albopictus mosquitoes, which were collected in different districts of Laos (Kaysone Phomvihane, Vangvieng, Saysettha and Xaythany), for vgsc mutations commonly found throughout Asia (S989P, V1016G and F1534C). Sequences of the vgsc gene showed that the F1534C mutation was prevalent in both Aedes species. S989P and V1016G mutations were detected in Ae. aegypti from each site and were always found together. In addition, the mutation T1520I was seen in Ae. albopictus mosquitoes from Saysettha district as well as in all Ae. aegypti samples. Thus, mutations in the vgsc gene of Ae. aegypti are prevalent in the four districts studied indicating growing insecticide resistance throughout Laos. Constant monitoring programmes and alternative strategies for controlling Aedes should be utilized in order to prolong the effectiveness of pyrethroids thereby maximizing vector control.


Assuntos
Aedes , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , Aedes/genética , Laos , Mosquitos Vetores/genética , Íntrons , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Piretrinas/farmacologia , Canais de Sódio Disparados por Voltagem/genética , Mutação
4.
Pestic Biochem Physiol ; 181: 105030, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35082026

RESUMO

Insect nicotinic acetylcholine receptors (nAChR) are molecular targets of highly effective insecticides. The use of chaperone proteins has been key to successful functional expression of these receptors in heterologous systems, permitting functional and pharmacological studies of insect nAChRs with particular subunit composition. Here, we report the first use of the chaperone protein, NACHO, to enable functional expression of an insect nAChR, the α6 subunit from Apis mellifera, in Xenopus laevis oocytes. This is also the first report of functional expression of a homomeric insect α6 nAChR. Using two-electrode voltage-clamp electrophysiology we show that the acetylcholine EC50 of the α6 receptor is 0.88 µM and that acetylcholine responses are antagonized by α-bungarotoxin. Spinosad showed agonist actions and kept the ion channel open when co-applied with acetylcholine, reinforcing the α6 nAChR subunit as a key molecular target for the spinosyn class of insecticide. The use of NACHO may provide a basis for future expression studies of insect α6 nAChRs, potentially providing a tool for the discovery of novel insecticides.


Assuntos
Inseticidas , Receptores Nicotínicos , Acetilcolina/farmacologia , Animais , Abelhas , Insetos , Inseticidas/farmacologia , Oócitos , Receptores Nicotínicos/genética , Xenopus laevis
5.
Pestic Biochem Physiol ; 182: 105055, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35249651

RESUMO

Insect nicotinic acetylcholine receptors (nAChRs) are molecular targets of highly effective insecticides such as neonicotinoids. Functional expression of these receptors provides useful insights into their functional and pharmacological properties. Here, we report that the α5 nAChR subunit of the honey bee, Apis mellifera, functionally expresses in Xenopus laevis oocytes, which is the first time a homomeric insect nAChR has been robustly expressed in a heterologous system without the need for chaperone proteins. Using two-electrode voltage-clamp electrophysiology we show that the α5 receptor has low sensitivity to acetylcholine with an EC50 of 2.37 mM. However, serotonin acts as an agonist with a considerably lower EC50 at 119 µM that is also more efficacious than acetylcholine in activating the receptor. Molecular modelling indicates that residues in the complementary binding site may be involved in the selectivity towards serotonin. This is the first report of a ligand-gated ion channel activated by serotonin from an insect and phylogenetic analysis shows that the α5 subunit of A. mellifera and other non-Dipteran insects, including pest species, belong to a distinct subgroup of subunits, which may represent targets for the development of novel classes of insecticides.


Assuntos
Receptores Nicotínicos , Acetilcolina/farmacologia , Animais , Abelhas , Neonicotinoides/farmacologia , Oócitos/metabolismo , Filogenia , Receptores Nicotínicos/metabolismo , Serotonina/farmacologia , Xenopus laevis/metabolismo
6.
Pestic Biochem Physiol ; 181: 105017, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35082040

RESUMO

Broflanilide is a novel insecticide with a unique mode of action on the insect GABA receptor and is registered worldwide for the control of agricultural pests. It shows high efficacy in controlling the fall armyworm (FAW) Spodoptera frugiperda, which is a destructive pest to various crops. FAW was exposed to sublethal concentrations of broflanilide to determine its impact on insect development. Sublethal doses (LD10 and LD30) caused failure of ecdysis, reduced body length of larvae, malformation of pupae, and vestigial wing formation in adults. Also, broflanilide at LD30 significantly reduced the amount of molting hormone (MH). After exposure to LD10 or LD30 broflanilide, expression of five Halloween genes, which participate in MH biosynthesis, were found to be altered. Specifically, the transcript levels of SfrCYP307A1 (Spook), SfrCYP314A1 (Shade) and SfrCYP315A1 (Shadow) in 3rd day larvae were significantly decreased as well as SfrCYP302A1 (Disembodied) and SfrCYP306A1 (Phantom) in 5th day pupae. In contrast, the transcript levels of SfrCYP302A1 in 3rd day larvae, SfrCYP307A1 and SfrCYP314A1 in 5th day pupae, and SfrCYP306A1, SfrCYP307A1 and SfrCYP315A1 in 0.5th day adults were significantly increased. Our results demonstrate that broflanilide caused the failure of ecdysis in FAW possibly by influencing the intake of cholesterol through inhibition of feeding and also via altering expression of genes important for MH biosynthesis.


Assuntos
Ecdisona , Muda , Animais , Benzamidas , Fluorocarbonos , Larva , Spodoptera/genética
7.
Pestic Biochem Physiol ; 151: 59-66, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30704714

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are the main target of neonicotinoid insecticides, which are widely used in crop protection against insect pests. Electrophysiological and molecular approaches have demonstrated the presence of several nAChR subtypes with different affinities for neonicotinoid insecticides. However, the precise mode of action of neonicotinoids on insect nAChRs remains to be elucidated. Radioligand binding studies with [3H]-α-bungarotoxin and [3H]-imidacloprid have proved instructive in understanding ligand binding interactions between insect nAChRs and neonicotinoid insecticides. The precise binding site interactions have been established using membranes from whole body and specific tissues. In this review, we discuss findings concerning the number of nAChR binding sites against neonicotinoid insecticides from radioligand binding studies on native tissues. We summarize the data available in the literature and compare the binding properties of the most commonly used neonicotinoid insecticides in several insect species. Finally, we demonstrate that neonicotinoid-nAChR binding sites are also linked to biological samples used and insect species.


Assuntos
Inseticidas/farmacologia , Neonicotinoides/química , Neonicotinoides/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Animais , Sítios de Ligação , Humanos , Ligação Proteica/efeitos dos fármacos
8.
Int J Mol Sci ; 19(8)2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065178

RESUMO

The insect GABA receptor, RDL (resistance to dieldrin), is a cys-loop ligand-gated ion channel (cysLGIC) that plays a central role in neuronal signaling, and is the target of several classes of insecticides. Many insects studied to date possess one Rdl gene; however, there is evidence of two Rdls in aphids. To characterise further this insecticide target from pests that cause millions of dollars' worth of crop damage each year, we identified the complete cysLGIC gene superfamily of the pea aphid, Acyrthosiphon pisum, using BLAST analysis. This confirmed the presence of two Rdl-like genes (RDL1 and RDL2) that likely arose from a recent gene duplication. When expressed individually in Xenopus laevis oocytes, both subunits formed functional ion channels gated by GABA. Alternative splicing of RDL1 influenced the potency of GABA, and the potency of fipronil was different on the RDL1bd splice variant and RDL2. Imidacloprid and clothianidin showed no antagonistic activity on RDL1, whilst 100 µM thiacloprid reduced the GABA responses of RDL1 and RDL2 to 55% and 62%, respectively. It was concluded that gene duplication of Rdl may have conferred increased tolerance to natural insecticides, and played a role in the evolution of insect cysLGICs.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Afídeos/genética , Processamento Alternativo/genética , Animais , Afídeos/efeitos dos fármacos , Duplicação Gênica/efeitos dos fármacos , Duplicação Gênica/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Pirazóis/farmacologia , Tiazinas/farmacologia
9.
J Neurochem ; 135(4): 705-13, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26296809

RESUMO

A mutation in the second transmembrane domain of the GABA receptor subunit, Rdl, is associated with resistance to insecticides such as dieldrin and fipronil. Molecular cloning of Rdl cDNA from a strain of the malaria mosquito, Anopheles gambiae, which is highly resistant to dieldrin revealed this mutation (A296G) as well as another mutation in the third transmembrane domain (T345M). Wild-type, A296G, T345M and A296G + T345M homomultimeric Rdl were expressed in Xenopus laevis oocytes and their sensitivities to fipronil, deltamethrin, 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT), imidacloprid and spinosad were measured using two-electrode voltage-clamp electrophysiology. Spinosad and DDT had no agonist or antagonist actions on Rdl. However, fipronil, deltamethrin and imidacloprid decreased GABA-evoked currents. These antagonistic actions were either reduced or abolished with the A296G and the A296G + T345M mutations while T345M alone appeared to have no significant effect. In conclusion, this study identifies another mutation in the mosquito Rdl that is associated with insecticide resistance. While T345M itself does not affect insecticide sensitivity, it may serve to offset the structural impact of A296G. The present study also highlights Rdl as a potential secondary target for neonicotinoids and pyrethroids. We show for the first time that deltamethrin (a pyrethroid insecticide) and imidacloprid (a neonicotinoid insecticide) act directly on the insect GABA receptor, Rdl. Our findings highlight Rdl as a potential secondary target of pyrethroids and neonicotinoids mutations in which may contribute to resistance to these widely used insecticides.


Assuntos
Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Guanidina/análogos & derivados , Inseticidas/farmacologia , Piretrinas/farmacologia , Receptores de GABA-A/metabolismo , Animais , Canais de Cloreto/metabolismo , Culicidae , Relação Dose-Resposta a Droga , Proteínas de Drosophila/genética , Interações Medicamentosas , Estimulação Elétrica , Regulação da Expressão Gênica/genética , Guanidina/farmacologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida/métodos , Oócitos , Receptores de GABA-A/genética , Xenopus laevis/anatomia & histologia , Ácido gama-Aminobutírico/farmacologia
10.
Mol Pharmacol ; 86(6): 686-95, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25261427

RESUMO

Glutamate-gated chloride channels (GluCls) mediate fast inhibitory neurotransmission in invertebrate nervous systems. Insect GluCls show alternative splicing, and, to determine its impact on channel function and pharmacology, we isolated GluCl cDNAs from larvae of the silkworm (Bombyx mori). We show that six B. mori glutamate-gated chloride channel variants are generated by splicing in exons 3 and 9 and that exons 3b and 3c are common in the brain and third thoracic ganglion. When expressed in Xenopus laevis oocytes, the three functional exon 3 variants (3a, b, c) all had similar EC50 values for l-glutamate and ivermectin (IVM); however, Imax (the maximum l-glutamate- and IVM-induced response of the channels at saturating concentrations) differed strikingly between variants, with the 3c variant showing the largest l-glutamate- and IVM-induced responses. By contrast, a partial deletion detected in exon 9 had a much smaller impact on l-glutamate and IVM actions. Binding assays using [(3)H]IVM indicate that diversity in IVM responses among the GluCl variants is mainly due to the impact on channel assembly, altering receptor cell surface numbers. GluCl variants expressed in HEK293 cells show that structural differences influenced Bmax but not Kd values of [(3)H]IVM. Domain swapping and site-directed mutagenesis identified four amino acids in exon 3c as hot spots determining the highest amplitude of the l-glutamate and IVM responses. Modeling the GluCl 3a and 3c variants suggested that three of the four amino acids contribute to intersubunit contacts, whereas the other interacts with the TM2-TM3 linker, influencing the receptor response.


Assuntos
Bombyx/metabolismo , Canais de Cloreto/química , Éxons , Splicing de RNA , Sequência de Aminoácidos , Animais , Canais de Cloreto/genética , Canais de Cloreto/fisiologia , Ácido Glutâmico/farmacologia , Células HEK293 , Humanos , Ivermectina/metabolismo , Ivermectina/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Relação Estrutura-Atividade , Xenopus laevis
11.
Insects ; 15(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38786914

RESUMO

(1) Background: In Cambodia, Aedes albopictus is an important vector of the dengue virus. Vector control using insecticides is a major strategy implemented in managing mosquito-borne diseases. Resistance, however, threatens to undermine the use of insecticides. In this study, we present the levels of insecticide resistance of Ae. albopictus in Cambodia and the mechanisms involved. (2) Methods: Two Ae. albopictus populations were collected from the capital, Phnom Penh city, and from rural Pailin province. Adults were tested with diagnostic doses of malathion (0.8%), deltamethrin (0.03%), permethrin (0.25%), and DDT (4%) using WHO tube assays. Synergist assays using piperonyl butoxide (PBO) were implemented before the pyrethroid assays to detect the potential involvement of metabolic resistance mechanisms. Adult female mosquitoes collected from Phnom Penh and Pailin were tested for voltage-gated sodium channel (VGSC) kdr (knockdown resistance) mutations commonly found in Aedes sp.-resistant populations throughout Asia (S989P, V1016G, and F1534C), as well as for other mutations (V410L, L982W, A1007G, I1011M, T1520I, and D1763Y). (3) Results: The two populations showed resistance against all the insecticides tested (<90% mortality). The use of PBO (an inhibitor of P450s) strongly restored the efficacy of deltamethrin and permethrin against the two resistant populations. Sequences of regions of the vgsc gene showed a lack of kdr mutations known to be associated with pyrethroid resistance. However, four novel non-synonymous mutations (L412P/S, C983S, Q1554STOP, and R1718L) and twenty-nine synonymous mutations were detected. It remains to be determined whether these mutations contribute to pyrethroid resistance. (4) Conclusions: Pyrethroid resistance is occurring in two Ae. albopictus populations originating from urban and rural areas of Cambodia. The resistance is likely due to metabolic resistance specifically involving P450s monooxygenases. The levels of resistance against different insecticide classes are a cause for concern in Cambodia. Alternative tools and insecticides for controlling dengue vectors should be used to minimize disease prevalence in the country.

12.
J Biol Chem ; 286(4): 2550-8, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20966081

RESUMO

The nematode Caenorhabditis elegans is an established model organism for studying neurobiology. UNC-63 is a C. elegans nicotinic acetylcholine receptor (nAChR) α-subunit. It is an essential component of the levamisole-sensitive muscle nAChR (L-nAChR) and therefore plays an important role in cholinergic transmission at the nematode neuromuscular junction. Here, we show that worms with the unc-63(x26) allele, with its αC151Y mutation disrupting the Cys-loop, have deficient muscle function reflected by impaired swimming (thrashing). Single-channel recordings from cultured muscle cells from the mutant strain showed a 100-fold reduced frequency of opening events and shorter channel openings of L-nAChRs compared with those of wild-type worms. Anti-UNC-63 antibody staining in both cultured adult muscle and embryonic cells showed that L-nAChRs were expressed at similar levels in the mutant and wild-type cells, suggesting that the functional changes in the receptor, rather than changes in expression, are the predominant effect of the mutation. The kinetic changes mimic those reported in patients with fast-channel congenital myasthenic syndromes. We show that pyridostigmine bromide and 3,4-diaminopyridine, which are drugs used to treat fast-channel congenital myasthenic syndromes, partially rescued the motility defect seen in unc-63(x26). The C. elegans unc-63(x26) mutant may therefore offer a useful model to assist in the development of therapies for syndromes produced by altered function of human nAChRs.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Músculos/metabolismo , Junção Neuromuscular/metabolismo , Receptores Nicotínicos/metabolismo , 4-Aminopiridina/análogos & derivados , 4-Aminopiridina/farmacologia , Amifampridina , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Mutação , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Estrutura Secundária de Proteína , Brometo de Piridostigmina/farmacologia , Receptores Nicotínicos/genética , Natação
13.
J Neurochem ; 123(6): 911-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22970690

RESUMO

RIC-3 enhances the functional expression of certain nicotinic acetylcholine receptors (nAChRs) in vertebrates and invertebrates and increases the availability of functional receptors in cultured cells and Xenopus laevis oocytes. Maximal activity of RIC-3 may be cell-type dependent, so neither mammalian nor invertebrate proteins is optimal in amphibian oocytes. We cloned the X. laevis ric-3 cDNA and tested the frog protein in oocyte expression studies. X. laevis RIC-3 shares 52% amino acid identity with human RIC-3 and only 17% with that of Caenorhabditis elegans. We used the C. elegans nicotinic receptor, ACR-16, to compare the ability of RIC-3 from three species to enhance receptor expression. In the absence of RIC-3, the proportion of oocytes expressing detectable nAChRs was greatly reduced. Varying the ratio of acr-16 to X. laevis ric-3 cRNAs injected into oocytes had little impact on the total cell current. When X. laevis, human or C. elegans ric-3 cRNAs were co-injected with acr-16 cRNA (1 : 1 ratio), 100 µM acetylcholine induced larger currents in oocytes expressing X. laevis RIC-3 compared with its orthologues. This provides further evidence for a species-specific component of RIC-3 activity, and suggests that X. laevis RIC-3 is useful for enhancing the expression of invertebrate nAChRs in X. laevis oocytes.


Assuntos
Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Chaperonas Moleculares/fisiologia , Oócitos/metabolismo , Receptores Nicotínicos/biossíntese , Receptores Nicotínicos/genética , Regulação para Cima/genética , Proteínas de Xenopus/fisiologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Dados de Sequência Molecular , Oócitos/fisiologia , Receptores Nicotínicos/fisiologia , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7
14.
Pharmacol Rev ; 61(1): 39-61, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19293145

RESUMO

Alzheimer's disease (AD), the major contributor to dementia in the elderly, involves accumulation in the brain of extracellular plaques containing the beta-amyloid protein (Abeta) and intracellular neurofibrillary tangles of hyperphosphorylated tau protein. AD is also characterized by a loss of neurons, particularly those expressing nicotinic acetylcholine receptors (nAChRs), thereby leading to a reduction in nAChR numbers. The Abeta(1-42) protein, which is toxic to neurons, is critical to the onset and progression of AD. The discovery of new drug therapies for AD is likely to be accelerated by an improved understanding of the mechanisms whereby Abeta causes neuronal death. We examine the evidence for a role in Abeta(1-42) toxicity of nAChRs; paradoxically, nAChRs can also protect neurons when activated by nicotinic ligands. Abeta peptides and nicotine differentially activate several intracellular signaling pathways, including the phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene homolog pathway, the extracellular signal-regulated kinase/mitogen-activated protein kinase, and JAK-2/STAT-3 pathways. These pathways control cell death or survival and the secretion of Abeta peptides. We propose that understanding the differential activation of these pathways by nicotine and/or Abeta(1-42) may offer the prospect of new routes to therapy for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/fisiologia , Fragmentos de Peptídeos/fisiologia , Receptores Nicotínicos/fisiologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Humanos , Transdução de Sinais
15.
Pest Manag Sci ; 77(8): 3787-3799, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33347700

RESUMO

BACKGROUND: Cockroaches are serious urban pests that can transfer disease-causing microorganisms as well as trigger allergic reactions and asthma. They are commonly managed by pesticides that act on cys-loop ligand-gated ion channels (cysLGIC). To provide further information that will enhance our understanding of how insecticides act on their molecular targets in cockroaches, we used genome and reverse transcriptase polymerase chain reaction (RT-PCR) data to characterize the cysLGIC gene superfamilies from Blattella germanica and Periplaneta americana. RESULTS: The B. germanica and P. americana cysLGIC superfamilies consist of 30 and 32 subunit-encoding genes, respectively, which are the largest insect cysLGIC superfamilies characterized to date. As with other insects, the cockroaches possess ion channels predicted to be gated by acetylcholine, γ-aminobutyric acid, glutamate and histamine, as well as orthologues of the drosophila pH-sensitive chloride channel (pHCl), CG8916 and CG12344. The large cysLGIC superfamilies of cockroaches are a result of an expanded number of divergent nicotinic acetylcholine receptor subunits, with B. germanica and P. americana, respectively, possessing eight and ten subunit genes. Diversity of the cockroach cysLGICs is also broadened by alternative splicing and RNA A-to-I editing. Unusually, both cockroach species possess a second glutamate-gated chloride channel as well as another CG8916 subunit. CONCLUSION: These findings on B. germanica and P. americana enhance our understanding of the evolution of the insect cysLGIC superfamily and provide a useful basis for the study of their function, the detection and management of insecticide resistance, and for the development of improved pesticides with greater specificity towards these major pests. © 2020 Society of Chemical Industry.


Assuntos
Blattellidae , Baratas , Canais Iônicos de Abertura Ativada por Ligante , Periplaneta , Receptores Nicotínicos , Animais , Insetos
16.
J Agric Food Chem ; 69(39): 11582-11591, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34555899

RESUMO

The ionotropic γ-aminobutyric acid (iGABA) receptor is commonly considered as a fast inhibitory channel and is an important insecticide target. Since 1990, RDL, LCCH3, and GRD have been successively isolated and found to be potential subunits of the insect iGABA receptor. More recently, one orphan gene named 8916 was found and considered to be another potential iGABA receptor subunit according to its amino acid sequence. However, little information about 8916 has been reported. Here, the 8916 subunit from Chilo suppressalis was studied to determine whether it can form part of a functional iGABA receptor by co-expressing this subunit with CsRDL1 or CsLCCH3 in the Xenopus oocyte system. Cs8916 or CsLCCH3 did not form functional ion channels when expressed alone. However, Cs8916 was able to form heteromeric ion channels when expressed with either CsLCCH3 or CsRDL1. The recombinant heteromeric Cs8916/LCCH3 channel was a cation-selective channel, which was sensitive to GABA or ß-alanine. The current of the Cs8916/LCCH3 channel was inhibited by dieldrin, endosulfan, fipronil, or ethiprole. In contrast, fluralaner, broflanilide, and avermectin showed little effect on the Cs8916/LCCH3 channel (IC50s > 10 000 nM). The Cs8916/RDL1 channel was sensitive to GABA, but was significantly different in EC50 and Imax for GABA to those of homomeric CsRDL1. Fluralaner, fipronil, or dieldrin showed antagonistic actions on Cs8916/RDL1. In conclusion, Cs8916 is a potential iGABA receptor subunit, which can interact with CsLCCH3 to generate a cation-selective channel that is sensitive to several insecticides. Also, as Cs8916/RDL1 has a higher EC50 than homomeric CsRDL1, Cs8916 may affect the physiological functions of CsRDL1 and therefore play a role in fine-tuning GABAergic signaling.


Assuntos
Inseticidas , Mariposas , Sequência de Aminoácidos , Animais , Inseticidas/farmacologia , Mariposas/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo , Receptores de GABA-A , Ácido gama-Aminobutírico
17.
J Neurosci ; 29(13): 4287-92, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19339622

RESUMO

The molecular diversity of many gene products functioning in the nervous system is enhanced by alternative splicing and adenosine-to-inosine editing of pre-mRNA. Using RDL, a Drosophila melanogaster GABA-gated ion channel, we examined the functional impact of RNA editing at several sites along with alternative splicing of more than one exon. We show that alternative splicing and RNA editing have a combined influence on the potency of the neurotransmitter GABA, and the editing isoforms detected in vivo span the entire functional range of potencies seen for all possible edit variants expressed in Xenopus laevis oocytes. The extent of RNA editing is developmentally regulated and can also be linked to the choice of alternative exons. These results provide insights into how the rich diversity of signaling necessary for complex brain function can be achieved by relatively few genes.


Assuntos
Processamento Alternativo/genética , Proteínas de Drosophila/genética , Edição de RNA/efeitos dos fármacos , Edição de RNA/fisiologia , Receptores de GABA-A/genética , Ácido gama-Aminobutírico/farmacologia , Fatores Etários , Sequência de Aminoácidos , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Drosophila melanogaster , Embrião não Mamífero , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Microinjeções/métodos , Mutação/fisiologia , Oócitos , Técnicas de Patch-Clamp , Xenopus laevis
18.
Adv Exp Med Biol ; 683: 25-43, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20737786

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate fast synaptic transmission in the insect nervous system and are targets of a major group of insecticides, the neonicotinoids. They consist of five subunits arranged around a central ion channeL Since the subunit composition determines the functional and pharmacological properties of the receptor the presence of nAChR families comprising several subunit-encodinggenes provides a molecular basis for broad functional diversity. Analyses of genome sequences have shown that nAChR gene families remain compact in diverse insect species, when compared to their nematode andvertebrate counterparts. Thus, the fruit fly (Drosophila melanogaster), malaria mosquito (Anopheles gambiae), honey bee (Apis mellifera), silk worm (Bombyx mon) and the red flour beetle (Tribolium castaneum) possess 10-12 nAChR genes while human and the nematode Caenorhabditis elegans have 16 and 29 respectively. Although insect nAChRgene families are amongst the smallest known, receptor diversity can be considerably increased by the posttranscriptional processes alternative splicing and mRNA A-to-I editingwhich can potentially generate protein products which far outnumber the nAChR genes. These two processes can also generate species-specific subunit isoforms. In addition, each insect possesses at least one highly divergent nAChR subunit which may perform species-specific functions. Species-specific subunit diversification may offer promising targets for future rational design of insecticides that target specific pest insects while sparing beneficial species.


Assuntos
Variação Genética , Insetos/genética , Subunidades Proteicas/genética , Receptores Nicotínicos/genética , Processamento Alternativo/genética , Sequência de Aminoácidos , Animais , Doença , Drosophila melanogaster/genética , Evolução Molecular , Humanos , Dados de Sequência Molecular , Controle de Pragas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo
19.
J Hazard Mater ; 394: 122521, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32279005

RESUMO

Broflanilide, a novel meta-diamide insecticide, shows high insecticidal activity against agricultural pests and is scheduled to be launched onto the market in 2020. However, little information about its potential toxicological effects on fish has been reported. In this study, broflanilide showed low toxicity to the zebrafish, Danio rerio, with LC50 > 10 mg L-1 at 96 h and also did not inhibit GABA-induced currents of the heteromeric Drα1ß2Sγ2 GABA receptor. Broflanilide showed medium bioconcentration level with a bioconcentration factor at steady state (BCFss) of 10.02 and 69.40 in D. rerio at 2.00 mg L-1 and 0.20 mg L-1, respectively. In the elimination process, the concentration of broflanilide rapidly decreased within two days and slowly dropped below the limit of quantification after ten days. In the 2.00 mg L-1 broflanilide treatment, CYP450 activity was significantly increased up to 3.11-fold during eight days. Glutathione-S- transferase (GST) activity significantly increased by 91.44 % within four days. In conclusion, the acute toxicity of broflanilide was low, but it might induce chronic toxicity, affecting metabolism. To our knowledge, this is the first report of the toxicological effects of broflanilide on an aquatic organism, which has the potential to guide the use of broflanilide in the field.


Assuntos
Benzamidas/toxicidade , Inseticidas/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Benzamidas/metabolismo , Bioacumulação , Sistema Enzimático do Citocromo P-450/metabolismo , Glutationa Transferase/metabolismo , Inseticidas/metabolismo , Oócitos/efeitos dos fármacos , Receptores de GABA/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo , Xenopus laevis
20.
J Med Entomol ; 57(3): 815-823, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-31807752

RESUMO

The gamma-aminobutyric acid (GABA) receptor, RDL, plays important roles in neuronal signaling and is the target of highly effective insecticides. A mutation in RDL, commonly A296S, underlies resistance to several insecticides such as cyclodienes. Even though the use of cyclodienes has been banned, the occurrence of mutations substituting A296 is notably high in mosquitoes from several countries. Here, we report a survey investigating the prevalence of the Rdl mutant allele in mosquitoes from Laos, a country where mosquito-borne diseases such as malaria and dengue fever are health concerns. Anopheles and Aedes mosquitoes were collected from 12 provinces in Laos. Adult bioassays on Aedes aegypti (Linnaeus) (Diptera: Culicidae) and Aedes albopictus (Skuse) (Diptera: Culicidae) showed that all the populations tested were susceptible to dieldrin (4%) following WHO protocols. Exon 7 from a total of 791 mosquitoes was sequenced to identify the amino acid encoded for at 296 of RDL. Only one of these mosquitoes, Anopheles maculatus rampae Harbach and Somboon (Diptera: Culicidae) from Attapeu, carried the mutant allele being heterozygous for A296S. We therefore found a general lack of the Rdl mutant allele indicating that mosquitoes from Laos are not exposed to insecticides that act on the GABA receptor compared to mosquitoes in several other countries. Identifying the prevalence of the Rdl mutation may help inform the potential use of alternative insecticides that act on the GABA receptor should there be a need to replace pyrethroids in order to prevent/manage resistance.


Assuntos
Aedes/genética , Anopheles/genética , Dieldrin/farmacologia , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Aedes/metabolismo , Alelos , Animais , Anopheles/metabolismo , Dengue , Proteínas de Insetos/metabolismo , Laos , Malária , Mosquitos Vetores/metabolismo , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA