Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cerebellum ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735882

RESUMO

Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction. We experimentally tested this hypothesis by genetically manipulating the mitochondrial fission/fusion equilibrium, creating double KO (DKO) mice that also lack positive (PP2A/Bß2) and negative (PKA/AKAP1) regulators of Drp1. Neither promoting mitochondrial fusion (Bß2 KO) nor fission (Akap1 KO) influenced progression of motor symptoms in Sacs KO mice. However, our studies identified profound learning and memory deficits in aged Sacs KO mice. Moreover, this cognitive impairment was rescued in a gene dose-dependent manner by deletion of the Drp1 inhibitor PKA/Akap1. Our results are inconsistent with mitochondrial dysfunction as a primary pathogenic mechanism in ARSACS. Instead, they imply that promoting mitochondrial fission may be beneficial at later stages of the disease when pathology extends to brain regions subserving learning and memory.

2.
J Cell Sci ; 134(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34228795

RESUMO

Neurodevelopmental disorders (NDDs), including intellectual disability (ID), autism and schizophrenia, have high socioeconomic impact, yet poorly understood etiologies. A recent surge of large-scale genome or exome sequencing studies has identified a multitude of mostly de novo mutations in subunits of the protein phosphatase 2A (PP2A) holoenzyme that are strongly associated with NDDs. PP2A is responsible for at least 50% of total Ser/Thr dephosphorylation in most cell types and is predominantly found as trimeric holoenzymes composed of catalytic (C), scaffolding (A) and variable regulatory (B) subunits. PP2A can exist in nearly 100 different subunit combinations in mammalian cells, dictating distinct localizations, substrates and regulatory mechanisms. PP2A is well established as a regulator of cell division, growth, and differentiation, and the roles of PP2A in cancer and various neurodegenerative disorders, such as Alzheimer's disease, have been reviewed in detail. This Review summarizes and discusses recent reports on NDDs associated with mutations of PP2A subunits and PP2A-associated proteins. We also discuss the potential impact of these mutations on the structure and function of the PP2A holoenzymes and the etiology of NDDs.


Assuntos
Deficiência Intelectual , Proteína Fosfatase 2 , Animais , Humanos , Deficiência Intelectual/genética , Mutação , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas/metabolismo
3.
Adv Exp Med Biol ; 1370: 311-321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35882806

RESUMO

In many experimental studies, pharmacological levels of taurine have been used to study physiological functions of taurine. However, this approach is unlikely to be fruitful, as pharmacological administration increases extracellular taurine, while physiological actions of taurine require alterations in intracellular taurine. Recognizing that different mechanisms might underlie the pharmacological and physiological actions of taurine, cardiac properties before and after exposure to various extracellular or intracellular concentrations of taurine were examined. To assess the effect of physiological taurine, myocardial contractility and metabolic status were compared in hearts containing different intracellular taurine concentrations. By contrast, the pharmacological actions of taurine were assessed in normal hearts perfused with buffer containing or lacking 10 mM taurine. Both pharmacological and physiological taurine increased contractile function and oxygen consumption. Yet, the pharmacological actions of taurine on contractile function were dependent on the L-type Ca2+ channel, while the sarcoplasmic reticular Ca2+ ATPase contributed to the physiological actions of taurine. ATP generation from available substrates, glucose, fatty acids, and acetate was increased for both the physiological and pharmacological actions of taurine. However, taurine supplementation enhanced ATP generation by elevating respiratory chain complex I activity and by stimulating metabolic flux through reductions in the NADH/NAD+ ratio, while the pharmacological actions of taurine can be traced to elevations in [Ca2+]i and the observed positive inotropic effect. Thus, the mechanisms underlying the pharmacological actions of taurine on contractile function and energy metabolism are entirely different than those contributing to the physiological actions of taurine.


Assuntos
Coração , Taurina , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Coração/fisiologia , Miocárdio/metabolismo , Taurina/metabolismo , Taurina/farmacologia
4.
J Biol Chem ; 295(17): 5654-5668, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32156701

RESUMO

Protein phosphatase 2A (PP2A) is a large enzyme family responsible for most cellular Ser/Thr dephosphorylation events. PP2A substrate specificity, localization, and regulation by second messengers rely on more than a dozen regulatory subunits (including B/R2, B'/R5, and B″/R3), which form the PP2A heterotrimeric holoenzyme by associating with a dimer comprising scaffolding (A) and catalytic (C) subunits. Because of partial redundancy and high endogenous expression of PP2A holoenzymes, traditional approaches of overexpressing, knocking down, or knocking out PP2A regulatory subunits have yielded only limited insights into their biological roles and substrates. To this end, here we sought to reduce the complexity of cellular PP2A holoenzymes. We used tetracycline-inducible expression of pairs of scaffolding and regulatory subunits with complementary charge-reversal substitutions in their interaction interfaces. For each of the three regulatory subunit families, we engineered A/B charge-swap variants that could bind to one another, but not to endogenous A and B subunits. Because endogenous Aα was targeted by a co-induced shRNA, endogenous B subunits were rapidly degraded, resulting in expression of predominantly a single PP2A heterotrimer composed of the A/B charge-swap pair and the endogenous catalytic subunit. Using B'δ/PPP2R5D, we show that PP2A complexity reduction, but not PP2A overexpression, reveals a role of this holoenzyme in suppression of extracellular signal-regulated kinase signaling and protein kinase A substrate dephosphorylation. When combined with global phosphoproteomics, the PP2A/B'δ reduction approach identified consensus dephosphorylation motifs in its substrates and suggested that residues surrounding the phosphorylation site play roles in PP2A substrate specificity.


Assuntos
Proteína Fosfatase 2/metabolismo , Animais , Células COS , Domínio Catalítico , Chlorocebus aethiops , Células HEK293 , Humanos , Modelos Moleculares , Fosforilação , Mapas de Interação de Proteínas , Multimerização Proteica , Proteína Fosfatase 2/análise , Subunidades Proteicas/análise , Subunidades Proteicas/metabolismo
5.
Can J Physiol Pharmacol ; 99(5): 512-521, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33091308

RESUMO

We determined whether North American ginseng (Panax quinquefolius L.) mitigates the effect of angiotensin II on hypertrophy and heart failure. Angiotensin II (0.3 mg/kg) was administered to rats for 2 or 4 weeks in the presence or absence of ginseng pretreatment. The effect of ginseng (10 µg/mL) on angiotensin II (100 nM) - induced hypertrophy was also determined in neonatal rat ventricular myocytes. We also determined effects of ginseng on fatty acid and glucose oxidation by measuring gene and protein expression levels of key factors. Angiotensin II treatment for 2 and 4 weeks induced cardiac hypertrophy as evidenced by increased heart weights, as well as the upregulation of the hypertrophy-related fetal gene expression levels, with all effects being abolished by ginseng. Ginseng also reduced abnormalities in left ventricular function as well as the angiotensin II-induced increased blood pressure. In myocytes, ginseng abolished the hypertrophic response to angiotensin II as assessed by surface area and gene expression of molecular markers of hypertrophy. Ginseng modulated angiotensin II-induced abnormalities in gene expression and protein levels of CD36, CPT1M, Glut4, and PDK4 in vivo and in vitro. In conclusion, ginseng suppresses angiotensin II-induced cardiac hypertrophy and dysfunction which is related to normalization of fatty acid and glucose oxidation.


Assuntos
Angiotensina II , Panax , Animais , Cardiomegalia , Insuficiência Cardíaca , Miócitos Cardíacos , Ratos
6.
Molecules ; 26(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34443494

RESUMO

Taurine is a naturally occurring sulfur-containing amino acid that is found abundantly in excitatory tissues, such as the heart, brain, retina and skeletal muscles. Taurine was first isolated in the 1800s, but not much was known about this molecule until the 1990s. In 1985, taurine was first approved as the treatment among heart failure patients in Japan. Accumulating studies have shown that taurine supplementation also protects against pathologies associated with mitochondrial defects, such as aging, mitochondrial diseases, metabolic syndrome, cancer, cardiovascular diseases and neurological disorders. In this review, we will provide a general overview on the mitochondria biology and the consequence of mitochondrial defects in pathologies. Then, we will discuss the antioxidant action of taurine, particularly in relation to the maintenance of mitochondria function. We will also describe several reported studies on the current use of taurine supplementation in several mitochondria-associated pathologies in humans.


Assuntos
Antioxidantes/metabolismo , Mitocôndrias/metabolismo , Taurina/metabolismo , Animais , Apoptose , Ensaios Clínicos como Assunto , Humanos , Doenças Mitocondriais/metabolismo , Taurina/química
7.
Mol Cell Biochem ; 454(1-2): 33-44, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30251118

RESUMO

Cardiac pathology including hypertrophy has been associated with an imbalance between mitochondrial fission and fusion. Generally, well-balanced mitochondrial fission and fusion are essential for proper functions of mitochondria. Leptin is a 16-kDa appetite-suppressing protein which has been shown to induce cardiomyocyte hypertrophy. In the present study, we determined whether leptin can influence mitochondrial fission or fusion and whether this can be related to its hypertrophic effect. Cardiomyocytes treated for 24 h with 3.1 nM leptin (50 ng/ml), a concentration representing plasma levels in obese individuals, demonstrated an increase in surface area and a significant 1.6-fold increase in the expression of the ß-myosin heavy chain. Mitochondrial staining with MitoTracker Green dye showed elongated structures in control cells with an average length of 4.5 µm. Leptin produced a time-dependent increase in mitochondrial fragmentation with decreasing mitochondrial length. The hypertrophic response to leptin was also associated with increased protein levels of the mitochondrial fission protein dynamin-related protein1 (Drp1) although gene expression of Drp1 was unaffected possibly suggesting post-translational modifications of Drp1. Indeed, leptin treatment was associated with decreased levels of phosphorylated Drp1 and increased translocation of Drp1 to the mitochondria thereby demonstrating a pro-fission effect of leptin. As calcineurin may dephosphorylate Drp1, we determined the effect of a calcineurin inhibitor, FK506, which prevented leptin-induced hypertrophy as well as mitochondrial fission and mitochondrial dysfunction. In conclusion, our data show that leptin-induced cardiomyocyte hypertrophy is associated with enhanced mitochondrial fission via a calcineurin-mediated pathway. The ability of leptin to stimulate mitochondrial fission may be important in understanding the role of this protein in cardiac pathology especially that related to mitochondrial dysfunction.


Assuntos
Dinaminas/genética , Hipertrofia/fisiopatologia , Leptina/farmacologia , Dinâmica Mitocondrial , Miócitos Cardíacos/fisiologia , Animais , Calcineurina/metabolismo , Dinaminas/metabolismo , Regulação da Expressão Gênica , Hipertrofia/etiologia , Hipertrofia/metabolismo , Leptina/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Obesidade/complicações , Fosforilação , Processamento de Proteína Pós-Traducional , Ratos , Ratos Sprague-Dawley
8.
Adv Exp Med Biol ; 975 Pt 1: 435-446, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28849473

RESUMO

Taurine forms a conjugate in the mitochondria with a uridine residue in the wobble position of tRNALeu(UUR). The resulting product, 5-taurinomethyluridine tRNALeu(UUR), increases the interaction between the UUG codon and AAU anticodon of tRNALeu(UUR), thereby improving the decoding of the UUG codon. We have shown that the protein most affected by the taurine conjugation product is ND6, which is a subunit of complex I of the respiratory chain. Thus, taurine deficiency exhibits reduced respiratory chain function. Based on these findings, we proposed that the taurine deficient heart is energy deficient. To test this idea, hearts were perfused with buffer containing acetate and glucose as substrates. The utilization of both substrates, as well as the utilization of endogenous lipids, was significantly reduced in the taurine deficient heart. This led to a 25% decrease in ATP production, an effect primarily caused by diminished aerobic metabolism and respiratory function. In addition, inefficient oxidative phosphorylation causes a further decrease in ATP generation. The data support the idea that reductions in energy metabolism, including oxidative phosphorylation, ATP generation and high energy phosphate content, contribute to the severity of the cardiomyopathy. The findings are also consistent with the hypothesis that taurine deficiency and reduced myocardial energy content increases mortality of the taurine deficient, failing heart. The clinical implications of these findings are addressed.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Taurina/deficiência , Animais , Metabolismo Energético/fisiologia , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar
9.
Amino Acids ; 48(2): 549-58, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26475290

RESUMO

Taurine is a ß-amino acid found in high concentrations in excitable tissues, including the heart. A significant reduction in myocardial taurine content leads to the development of a unique dilated, atrophic cardiomyopathy. One of the major functions of taurine in the heart is the regulation of the respiratory chain. Hence, we tested the hypothesis that taurine deficiency-mediated defects in respiratory chain function lead to impaired energy metabolism and reduced ATP generation. We found that while the rate of glycolysis was significantly enhanced in the taurine-deficient heart, glucose oxidation was diminished. The major site of reduced glucose oxidation was pyruvate dehydrogenase, an enzyme whose activity is reduced by the increase in the NADH/NAD+ ratio and by decreased availability of pyruvate for oxidation to acetyl CoA and changes in [Mg2+]i. Also diminished in the taurine-deficient heart was the oxidation of two other precursors of acetyl CoA, endogenous fatty acids and exogenous acetate. In the taurine-deficient heart, impaired citric acid cycle activity decreased both acetate oxidation and endogenous fatty acid oxidation, but reductions in the activity of the mitochondrial transporter, carnitine palmitoyl transferase, appeared to also contribute to the reduction in fatty acid oxidation. These changes diminished the rate of ATP production, causing a decline in the phosphocreatine/ATP ratio, a sign of reduced energy status. The findings support the hypothesis that the taurine-deficient heart is energy starved primarily because of impaired respiratory chain function, an increase in the NADH/NAD+ ratio and diminished long chain fatty acid uptake by the mitochondria. The results suggest that improved energy metabolism contributes to the beneficial effect of taurine therapy in patients suffering from heart failure.


Assuntos
Transporte de Elétrons/genética , Metabolismo Energético/genética , Coração/fisiopatologia , Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Taurina/deficiência , Acetilcoenzima A/biossíntese , Trifosfato de Adenosina/biossíntese , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético/fisiologia , Glucose/metabolismo , Glicólise/genética , Magnésio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , NAD/metabolismo , Oxirredução , Palmitatos/metabolismo , Ácido Pirúvico/metabolismo , Ratos , Ratos Wistar
10.
Mol Cell Biochem ; 416(1-2): 11-22, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27023909

RESUMO

Hyper-beta-alaninemia is a rare metabolic condition that results in elevated plasma and urinary ß-alanine levels and is characterized by neurotoxicity, hypotonia, and respiratory distress. It has been proposed that at least some of the symptoms are caused by oxidative stress; however, only limited information is available on the mechanism of reactive oxygen species generation. The present study examines the hypothesis that ß-alanine reduces cellular levels of taurine, which are required for normal respiratory chain function; cellular taurine depletion is known to reduce respiratory function and elevate mitochondrial superoxide generation. To test the taurine hypothesis, isolated neonatal rat cardiomyocytes and mouse embryonic fibroblasts were incubated with medium lacking or containing ß-alanine. ß-alanine treatment led to mitochondrial superoxide accumulation in conjunction with a decrease in oxygen consumption. The defect in ß-alanine-mediated respiratory function was detected in permeabilized cells exposed to glutamate/malate but not in cells utilizing succinate, suggesting that ß-alanine leads to impaired complex I activity. Taurine treatment limited mitochondrial superoxide generation, supporting a role for taurine in maintaining complex I activity. Also affected by taurine is mitochondrial morphology, as ß-alanine-treated fibroblasts undergo fragmentation, a sign of unhealthy mitochondria that is reversed by taurine treatment. If left unaltered, ß-alanine-treated fibroblasts also undergo mitochondrial apoptosis, as evidenced by activation of caspases 3 and 9 and the initiation of the mitochondrial permeability transition. Together, these data show that ß-alanine mediates changes that reduce ATP generation and enhance oxidative stress, factors that contribute to heart failure.


Assuntos
Distúrbios do Sono por Sonolência Excessiva/metabolismo , Mitocôndrias Cardíacas/metabolismo , Doenças Mitocondriais/metabolismo , Miócitos Cardíacos/metabolismo , Convulsões/metabolismo , beta-Alanina/metabolismo , beta-Alanina/toxicidade , Animais , Distúrbios do Sono por Sonolência Excessiva/genética , Distúrbios do Sono por Sonolência Excessiva/patologia , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Camundongos , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Miócitos Cardíacos/patologia , Consumo de Oxigênio , Ratos , Convulsões/genética , Convulsões/patologia , Taurina/biossíntese , Taurina/genética , beta-Alanina/genética
11.
Am J Physiol Heart Circ Physiol ; 308(3): H232-9, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25437920

RESUMO

Taurine is a beta-amino acid found in very high concentration in the heart. Depletion of these intracellular stores results in the development of cardiomyopathy, thought to be mediated by abnormal sarcoplasmic reticular (SR) Ca(2+) transport. There is also evidence that taurine directly alters the Ca(2+) sensitivity of myofibrillar proteins. Major regulators of SR Ca(2+) ATPase (SERCA2a) are the phosphorylation status of a regulatory protein, phospholamban, and SERCA2a expression, which are diminished in the failing heart. The failing heart also exhibits reductions in myofibrillar Ca(2+) sensitivity, a property regulated by the phosphorylation of the muscle protein, troponin I. Therefore, we tested the hypothesis that taurine deficiency leads to alterations in SR Ca(2+) ATPase activity related to reduced phospholamban phosphorylation and expression of SERCA2a. We found that a sequence of events, which included elevated protein phosphatase 1 activity, reduced autophosphorylation of CaMKII, and reduced phospholamban phosphorylation, supports the reduction in SR Ca(2+) ATPase activity. However, the reduction in SR Ca(2+) ATPase activity was not caused by reduced SERCA2a expression. Taurine transporter knockout (TauTKO) hearts also exhibited a rightward shift in the Ca(2+) dependence of the myofibrillar Ca(2+) ATPase, a property that is associated with an elevation in phosphorylated troponin I. The findings support the observation that taurine deficient hearts develop systolic and diastolic defects related to reduced SR Ca(2+) ATPase activity, a change mediated in part by reduced phospholamban phosphorylation.


Assuntos
Acoplamento Excitação-Contração , Coração/fisiologia , Miocárdio/metabolismo , Processamento de Proteína Pós-Traducional , Taurina/deficiência , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Contração Miocárdica , Fosforilação , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Troponina I/metabolismo
12.
Amino Acids ; 47(12): 2609-22, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26193770

RESUMO

Taurine depletion leads to impaired mitochondrial function, as characterized by reduced ATP production and elevated superoxide generation. These defects can fundamentally alter cardiomyocyte function and if left unchanged can result in cell death. To protect against these stresses, cardiomyocytes possess quality control processes, such as the ubiquitin-proteasome system (UPS) and autophagy, which can rejuvenate cells through the degradation of damaged proteins and organelles. Hence, the present study tested the hypothesis that reactive oxygen species generated by damaged mitochondria initiates UPS and autophagy in the taurine-deficient heart. Using transgenic mice lacking the taurine transporter (TauTKO) as a model of taurine deficiency, it was shown that the levels of ubiquitinated protein were elevated, an effect associated with a decrease in ATP-dependent 26S ß5 proteasome activity. Treating the TauTKO mouse with the mitochondria-specific antioxidant, mitoTEMPO, largely abolished the increase in ubiquitinated protein content. The TauTKO heart was also associated with impaired autophagy, characterized by an increase in the initiator, Beclin-1, and autophagosome content, but a defect in the generation of active autophagolysosomes. Although mitoTEMPO treatment only restores the oxidative balance within the mitochondria, it appeared to completely disrupt the crosstalk between the damaged mitochondria and the quality control processes. Thus, mitochondrial oxidative stress is the main trigger initiating the quality control systems in the taurine-deficient heart. We conclude that the activation of the UPS and autophagy is another fundamental function of mitochondria.


Assuntos
Autofagia , Coração/fisiologia , Miocárdio/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Taurina/fisiologia , Animais , Animais Recém-Nascidos , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Miócitos Cardíacos/citologia , Compostos Organofosforados/química , Estresse Oxidativo , Fagossomos/metabolismo , Piperidinas/química , Controle de Qualidade , Ratos , Ratos Wistar , Taurina/deficiência , Ubiquitinação
13.
Heart Fail Rev ; 19(1): 35-48, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23443849

RESUMO

Diabetic cardiomyopathy (DCM) is defined as cardiac disease independent of vascular complications during diabetes. The number of new cases of DCM is rising at epidemic rates in proportion to newly diagnosed cases of diabetes mellitus (DM) throughout the world. DCM is a heart failure syndrome found in diabetic patients that is characterized by left ventricular hypertrophy and reduced diastolic function, with or without concurrent systolic dysfunction, occurring in the absence of hypertension and coronary artery disease. DCM and other diabetic complications are caused in part by elevations in blood glucose and lipids, characteristic of DM. Although there are pathological consequences to hyperglycemia and hyperlipidemia, the combination of the two metabolic abnormalities potentiates the severity of diabetic complications. A natural competition exists between glucose and fatty acid metabolism in the heart that is regulated by allosteric and feedback control and transcriptional modulation of key limiting enzymes. Inhibition of these glycolytic enzymes not only controls flux of substrate through the glycolytic pathway, but also leads to the diversion of glycolytic intermediate substrate through pathological pathways, which mediate the onset of diabetic complications. The present review describes the limiting steps involved in the development of these pathological pathways and the factors involved in the regulation of these limiting steps. Additionally, therapeutic options with demonstrated or postulated effects on DCM are described.


Assuntos
Cardiomiopatias Diabéticas , Metabolismo Energético , Doenças Metabólicas , Função Ventricular/fisiologia , Cardiomiopatias Diabéticas/complicações , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Humanos , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/fisiopatologia , Estresse Oxidativo , Prognóstico
14.
Amino Acids ; 46(1): 21-30, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22936072

RESUMO

Taurine is an abundant ß-amino acid that regulates several events that dramatically influence the development of ischemia-reperfusion injury. One of these events is the extrusion of taurine and Na+ from the cell via the taurine/Na+ symport. The loss of Na+ during the ischemia-reperfusion insult limits the amount of available Na+ for Na+/Ca2+ exchange, an important process in the development of Ca2+ overload and the activation of the mitochondrial permeability transition, a key process in ischemia-reperfusion mediated cell death. Taurine also prevents excessive generation of reactive oxygen species by the respiratory chain, an event that also limits the activation of the MPT. Because taurine is an osmoregulator, changes in taurine concentration trigger "osmotic preconditioning," a process that activates an Akt-dependent cytoprotective signaling pathway that inhibits MPT pore formation. These effects of taurine have clinical implications, as experimental evidence reveals potential promise of taurine therapy in preventing cardiac damage during bypass surgery, heart transplantation and myocardial infarction. Moreover, severe loss of taurine from the heart during an ischemia-reperfusion insult may increase the risk of ventricular remodeling and development of heart failure.


Assuntos
Traumatismo por Reperfusão Miocárdica/metabolismo , Taurina/metabolismo , Animais , Cálcio/metabolismo , Morte Celular , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Traumatismo por Reperfusão Miocárdica/complicações , Traumatismo por Reperfusão Miocárdica/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sódio/metabolismo , Remodelação Ventricular
15.
Amino Acids ; 46(1): 47-56, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23179085

RESUMO

Taurine is an abundant ß-amino acid that concentrates in the mitochondria, where it participates in the conjugation of tRNAs for leucine, lysine, glutamate and glutamine. The formation of 5-taurinomethyluridine-tRNA strengthens the interaction of the anticodon with the codon, thereby promoting the decoding of several codons, including those for AAG, UUG, CAG and GAG. By preventing these series of events, taurine deficiency appears to diminish the formation of 5-taurinomethyluridine and causes inefficient decoding for the mitochondrial codons of leucine, lysine, glutamate and glutamine. The resulting reduction in the biosynthesis of mitochondria-encoded proteins deprives the respiratory chain of subunits required for the assembly of respiratory chain complexes. Hence, taurine deficiency is associated with a reduction in oxygen consumption, an elevation in glycolysis and lactate production and a decline in ATP production. A similar sequence of events takes place in mitochondrial diseases MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes) and MERRF (myoclonic epilepsy and ragged-red fiber syndrome). In both diseases, mutations in their respective tRNAs interfere with the formation of 5-taurinomethyluridine in the wobble position. Hence, the taurine-deficient phenotype resembles the phenotypes of MELAS and MERRF.


Assuntos
Síndrome MERRF/mortalidade , Mitocôndrias/metabolismo , Miopatias Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Taurina/metabolismo , Animais , Códon de Terminação/genética , Códon de Terminação/metabolismo , Transporte de Elétrons/genética , Glicólise/genética , Humanos , Síndrome MERRF/genética , Síndrome MERRF/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/patologia , Proteínas Mitocondriais/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Taurina/genética , Uridina/análogos & derivados , Uridina/genética , Uridina/metabolismo
16.
Amino Acids ; 46(5): 1147-57, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24615238

RESUMO

The major impetus behind the rise in energy drink popularity among adults is their ability to heighten mental alertness, improve physical performance and supply energy. However, accompanying the exponential growth in energy drink usage have been recent case reports and analyses from the National Poison Data System, raising questions regarding the safety of energy drinks. Most of the safety concerns have centered on the effect of energy drinks on cardiovascular and central nervous system function. Although the effects of caffeine excess have been widely studied, little information is available on potential interactions between the other active ingredients of energy drinks and caffeine. One of the active ingredients often mentioned as a candidate for interactions with caffeine is the beta-amino acid, taurine. Although taurine is considered a conditionally essential nutrient for humans and is thought to play a key role in several human diseases, clinical studies evaluating the effects of taurine are limited. However, based on this review regarding possible interactions between caffeine and taurine, we conclude that taurine should neutralize several untoward effects of caffeine excess. In agreement with this conclusion, the European Union's Scientific Committee on Food published a report in March 2003 summarizing its investigation into potential interactions of the ingredients in energy drinks. At the cardiovascular level, they concluded that "if there are any interactions between caffeine and taurine, taurine might reduce the cardiovascular effects of caffeine." Although these interactions remain to be further examined in humans, the physiological functions of taurine appear to be inconsistent with the adverse cardiovascular symptoms associated with excessive consumption of caffeine-taurine containing beverages.


Assuntos
Cafeína/efeitos adversos , Bebidas Energéticas/efeitos adversos , Coração/fisiologia , Taurina/química , Cafeína/química , Cafeína/metabolismo , Fenômenos Fisiológicos Cardiovasculares , Bebidas Energéticas/análise , Humanos , Taurina/metabolismo
17.
Res Sq ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38659734

RESUMO

Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction. We experimentally tested this hypothesis by genetically manipulating the mitochondrial fission/fusion equilibrium, creating double KO (DKO) mice that also lack positive (PP2A/Bß2) and negative (PKA/AKAP1) regulators of Drp1. Neither promoting mitochondrial fusion (Bß2 KO) nor fission (Akap1 KO) influenced progression of motor symptoms in Sacs KO mice. However, our studies identified profound learning and memory deficits in aged Sacs KO mice. Moreover, this cognitive impairment was rescued in a gene dose-dependent manner by deletion of the Drp1 inhibitor PKA/Akap1. Our results are inconsistent with mitochondrial dysfunction as a primary pathogenic mechanism in ARSACS. Instead, they imply that promoting mitochondrial fission may be beneficial at later stages of the disease when pathology extends to brain regions subserving learning and memory.

18.
Adv Exp Med Biol ; 776: 153-65, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23392880

RESUMO

MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes) is a mitochondrial disease caused by one or more mutations of tRNA(Leu(UUR)). These mutations reduce both the aminoacylation of tRNA(Leu(UUR)) and a posttranslational modification in the wobble position of tRNA(Leu(UUR)). Both changes result in reduced transcription of mitochondria-encoded proteins; however, reduced aminoacylation affects the decoding of both UUG and UUA while the wobble defect specifically diminishes UUG decoding. Because 12 out of the 13 mitochondria-encoded proteins are more dependent on UUA decoding than UUG decoding, the aminoacylation defect should have a more profound effect on protein synthesis than the wobble defect, which more specifically alters the expression of one mitochondria-encoded protein, ND6. Taurine serves as a substrate in the formation of 5-taurinomethyluridine-tRNA(Leu(UUR)); therefore, taurine deficiency should mimic 5-taurinomethyluridine-tRNA(Leu(UUR)) deficiency. Hence, the wobble hypothesis predicts that the symptoms of MELAS mimic those of taurine deficiency, provided that the dominant defect in MELAS is wobble modification deficiency. On the other hand, if the aminoacylation defect dominates, significant differences should exist between taurine deficiency and MELAS. The present review tests this hypothesis by comparing the symptoms of MELAS and taurine deficiency.


Assuntos
Síndrome MELAS/complicações , Síndrome MELAS/metabolismo , Taurina/deficiência , Animais , Crescimento e Desenvolvimento , Humanos , Especificidade de Órgãos , Taurina/metabolismo
19.
Amino Acids ; 42(6): 2223-32, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21691752

RESUMO

An important function of the ß-amino acid, taurine, is the regulation of oxidative stress. However, taurine is neither a classical scavenger nor a regulator of the antioxidative defenses, leaving uncertain the mechanism underlying the antioxidant activity of taurine. In the present study, the taurine antagonist and taurine transport inhibitor, ß-alanine, was used to examine the mechanism underlying the antioxidant activity of taurine. Exposure of isolated cardiomyocytes to medium containing ß-alanine for a period of 48 h led to a 45% decrease in taurine content and an increase in mitochondrial oxidative stress, as evidenced by enhanced superoxide generation, the inactivation of the oxidant sensitive enzyme, aconitase, and the oxidation of glutathione. Associated with the increase in oxidative stress was a decline in electron transport activity, with the activities of respiratory chain complexes I and III declining 50-65% and oxygen consumption falling 30%. A reduction in respiratory chain activity coupled with an increase in oxidative stress is commonly caused by the development of a bottleneck in electron transport that leads to the diversion of electrons from the respiratory chain to the acceptor oxygen forming in the process superoxide. Because ß-alanine exposure significantly reduces the levels of respiratory chain complex subunits, ND5 and ND6, the bottleneck in electron transport appears to be caused by impaired synthesis of key subunits of the electron transport chain complexes. Co-administration of taurine with ß-alanine largely prevents the mitochondrial effects of ß-alanine, but treatment of the cells with 5 mM taurine in the absence of ß-alanine has no effect on the mitochondria, likely because taurine treatment has little effect on cellular taurine levels. Thus, taurine serves as a regulator of mitochondrial protein synthesis, thereby enhancing electron transport chain activity and protecting the mitochondria against excessive superoxide generation.


Assuntos
Antioxidantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Taurina/farmacologia , Aconitato Hidratase/antagonistas & inibidores , Aconitato Hidratase/metabolismo , Animais , Animais Recém-Nascidos , Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , NADH Desidrogenase/metabolismo , Oxirredução/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Taurina/metabolismo , beta-Alanina/farmacologia
20.
Am J Physiol Cell Physiol ; 299(2): C289-97, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20505041

RESUMO

Hypernatremia exerts multiple cellular effects, many of which could influence the outcome of an ischemic event. To further evaluate these effects of hypernatremia, isolated neonatal cardiomyocytes were chronically incubated with medium containing either normal (142 mM) or elevated sodium (167 mM) and then transferred to medium containing deoxyglucose and the electron transport chain inhibitor amobarbital. Chronic hypernatremia diminished the degree of calcium accumulation and reactive oxygen species generation during the period of metabolic inhibition. The improvement in calcium homeostasis was traced in part to the downregulation of the Ca(V)3.1 T-type calcium channel, as deficiency in the Ca(V)3.1 subtype using short hairpin RNA or treatment with an inhibitor of the Ca(V)3.1 variant of the T-type calcium channel (i.e., diphenylhydantoin) attenuated energy deficiency-mediated calcium accumulation and cell death. Although hyperosmotically stressed cells (exposed to 50 mM mannitol) had no effect on T-type calcium channel activity, they were also resistant to death during metabolic inhibition. Both hyperosmotic stress and hypernatremia activated Akt, suggesting that they initiate the phosphatidylinositol 3-kinase/Akt cytoprotective pathway, which protects the cell against calcium overload and oxidative stress. Thus hypernatremia appears to protect the cell against metabolic inhibition by promoting the downregulation of the T-type calcium channel and stimulating cytoprotective protein kinase pathways.


Assuntos
Canais de Cálcio Tipo T/fisiologia , Metabolismo Energético/fisiologia , Hipernatremia/metabolismo , Animais , Animais Recém-Nascidos , Canais de Cálcio Tipo T/metabolismo , Morte Celular/fisiologia , Células Cultivadas , Regulação para Baixo/fisiologia , Transporte de Elétrons/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA