Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(34): e2305093120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579138

RESUMO

Voltage-sensitive dyes (VSDs) are used to image electrical activity in cells and tissues with submillisecond time resolution. Most of these fast sensors are constructed from push-pull chromophores whose fluorescence spectra are modulated by the electric field across the cell membrane. It was found that the substitution of naphthalene with chromene produces a 60 to 80 nm red-shift in absorption and emission spectra while maintaining fluorescence quantum efficiency and voltage sensitivity. One dye was applied to ex vivo murine heart with excitation at 730 nm, by far the longest wavelength reported in voltage imaging. This VSD resolves cardiac action potentials in single trials with 12% ΔF/F per action potential. The well-separated excitation spectra between these long-wavelength VSDs and channelrhodopsin (ChR2) enabled monitoring of action potential propagation in ChR2 hearts without any perturbation of electrical dynamics. Importantly, by employing spatially localized optogenetic manipulation, action potential dynamics can be assessed in an all-optical fashion with no artifact related to optical cross-talk between the reporter and actuator. These new environmentally sensitive chromene-based chromophores are also likely to have applications outside voltage imaging.


Assuntos
Corantes Fluorescentes , Coração , Camundongos , Animais , Potenciais de Ação/fisiologia , Coração/fisiologia , Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA