Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520695

RESUMO

This Symposium Review examines challenges to surviving birth and infancy at high altitudes. Chronic exposure to the environmental hypoxia of high altitudes increases the incidence of maternal vascular disorders of pregnancy characterized by placental insufficiency, restricted fetal growth and preterm delivery, and impairs pulmonary vascular health during infancy. While each condition independently contributes to excess morbidity and mortality in early life, evidence indicates vascular disorders of pregnancy and infantile pulmonary vascular dysfunction are intertwined. By integrating our recent scientific and clinical observations in Bolivia with existing literature, we propose potential avenues to reduce the infant mortality burden at high altitudes and reduce pulmonary vascular disease in highland neonates, and emphasize the need for further research to address unresolved questions.

2.
Am J Physiol Heart Circ Physiol ; 327(1): H191-H220, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758127

RESUMO

Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Período Pós-Parto , Gravidez , Humanos , Feminino , Animais , Complicações Cardiovasculares na Gravidez/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/diagnóstico
3.
Physiol Genomics ; 55(9): 357-367, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458464

RESUMO

High-altitude (>2,500 m) residence increases the risk of pregnancy vascular disorders such as fetal growth restriction and preeclampsia, each characterized by impaired placental function. Genetic attributes of highland ancestry confer relative protection against vascular disorders of pregnancy at high altitudes. Although ion channels have been implicated in placental function regulation, neither their expression in high-altitude placentas nor their relationship to high-altitude preeclampsia has been determined. Here, we measured the expression of 26 ion-channel genes in placentas from preeclampsia cases and normotensive controls in La Paz, Bolivia (3,850 m). In addition, we correlated gene transcription to maternal and infant ancestry proportions. Gene expression was assessed by PCR, genetic ancestry evaluated by ADMIXTURE, and ion channel proteins localized by immunofluorescence. In preeclamptic placentas, 11 genes were downregulated (ABCC9, ATP2A2, CACNA1C, KCNE1, KCNJ8, KCNK3, KCNMA1, KCNQ1, KCNQ4, PKD2, and TRPV6) and two were upregulated (KCNQ3 and SCNN1G). KCNE1 expression was positively correlated with high-altitude Amerindian ancestry and negatively correlated with non-high altitude. SCNN1G was negatively correlated with African ancestry, despite minimal African admixture. Most ion channels were localized in syncytiotrophoblasts (Cav1.2, TRPP2, TRPV6, and Kv7.1), whereas expression of Kv7.4 was primarily in microvillous membranes, Kir6.1 in chorionic plate and fetal vessels, and MinK in stromal cells. Our findings suggest a role for differential placental ion channel expression in the development of preeclampsia. Functional studies are needed to determine processes affected by these ion channels in the placenta and whether therapies directed at modulating their activity could influence the onset or severity of preeclampsia.


Assuntos
Placenta , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Placenta/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Altitude , Canais Iônicos/genética , Canais Iônicos/metabolismo , Expressão Gênica
4.
Am J Physiol Endocrinol Metab ; 324(6): E556-E568, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126847

RESUMO

Glucose, lactate, and amino acids are major fetal nutrients. During placental insufficiency-induced intrauterine growth restriction (PI-IUGR), uteroplacental weight-specific oxygen consumption rates are maintained, yet fetal glucose and amino acid supply is decreased and fetal lactate concentrations are increased. We hypothesized that uteroplacental metabolism adapts to PI-IUGR by altering nutrient allocation to maintain oxidative metabolism. Here, we measured nutrient flux rates, with a focus on nutrients shuttled between the placenta and fetus (lactate-pyruvate, glutamine-glutamate, and glycine-serine) in a sheep model of PI-IUGR. PI-IUGR fetuses weighed 40% less and had decreased oxygen, glucose, and amino acid concentrations and increased lactate and pyruvate versus control (CON) fetuses. Uteroplacental weight-specific rates of oxygen, glucose, lactate, and pyruvate uptake were similar. In PI-IUGR, fetal glucose uptake was decreased and pyruvate output was increased. In PI-IUGR placental tissue, pyruvate dehydrogenase (PDH) phosphorylation was decreased and PDH activity was increased. Uteroplacental glutamine output to the fetus and expression of genes regulating glutamine-glutamate metabolism were lower in PI-IUGR. Fetal glycine uptake was lower in PI-IUGR, with no differences in uteroplacental glycine or serine flux. These results suggest increased placental utilization of pyruvate from the fetus, without higher maternal glucose utilization, and lower fetoplacental amino acid shuttling during PI-IUGR. Mechanistically, AMP-activated protein kinase (AMPK) activation was higher and associated with thiobarbituric acid-reactive substances (TBARS) content, a marker of oxidative stress, and PDH activity in the PI-IUGR placenta, supporting a potential link between oxidative stress, AMPK, and pyruvate utilization. These differences in fetoplacental nutrient sensing and shuttling may represent adaptive strategies enabling the placenta to maintain oxidative metabolism.NEW & NOTEWORTHY These results suggest increased placental utilization of pyruvate from the fetus, without higher maternal glucose uptake, and lower amino acid shuttling in the placental insufficiency-induced intrauterine growth restriction (PI-IUGR) placenta. AMPK activation was associated with oxidative stress and PDH activity, supporting a putative link between oxidative stress, AMPK, and pyruvate utilization. These differences in fetoplacental nutrient sensing and shuttling may represent adaptive strategies enabling the placenta to maintain oxidative metabolism at the expense of fetal growth.


Assuntos
Insuficiência Placentária , Humanos , Gravidez , Feminino , Animais , Ovinos , Insuficiência Placentária/metabolismo , Placenta/metabolismo , Retardo do Crescimento Fetal/metabolismo , Glutamina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Feto/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Aminoácidos/metabolismo , Nutrientes , Glicina/metabolismo , Serina/metabolismo , Piruvatos/metabolismo , Oxigênio/metabolismo
5.
J Physiol ; 600(24): 5353-5364, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36286320

RESUMO

High-altitude (>2500 m or 8200 ft) residence reduces uterine artery blood flow during pregnancy, contributing to an increased incidence of preeclampsia and intrauterine growth restriction. However, not all pregnancies are affected by the chronic hypoxic conditions of high-altitude residence. K+ channels play important roles in the uterine vascular adaptation to pregnancy, promoting a reduction in myogenic tone and an increase in blood flow. We hypothesized that, in pregnancies with normal fetal growth at high altitude, K+ channel-dependent vasodilatation of myometrial arteries is increased compared to those from healthy pregnant women at a lower altitude (∼1700 m). Using pharmacological modulation of two K+ channels, ATP-sensitive (KATP ) and large-conductance Ca2+ -activated (BKCa ) K+ channels, we assessed the vasodilatation of myometrial arteries from appropriate for gestational age (AGA) pregnancies in women living at high or low altitudes. In addition, we evaluated the localization of these channels in the myometrial arteries using immunofluorescence. Our results showed an endothelium-dependent increase in KATP -dependent vasodilatation in myometrial arteries from high versus low altitude, whereas vasodilatation induced by BKCa activation was reduced in these vessels. Additionally, KATP channel co-localization with endothelial markers was reduced in the high-altitude myometrial arteries, which suggested that the functional increase in KATP activity may be by mechanisms other than regulation of channel localization. These observations highlight an important contribution of K+ channels to the human uterine vascular adaptation to pregnancy at high altitude serving to maintain normal fetal growth under conditions of chronic hypoxia. KEY POINTS: High-altitude (>2500 m or 8200 ft) residence reduces uterine blood flow during pregnancy and fetal growth. Animal models of high altitude/chronic hypoxia suggest that these reductions are partially due to reduced vascular K+. channel responses, such as those elicited by large conductance Ca2+ -activated (BKCa ) and ATP-sensitive (KATP ) K+ channel activation. We found that women residing at high versus low altitude during pregnancy showed diminished myometrial artery vasodilatory responses to endothelium-independent BKCa channel activation but greater responses to endothelium-dependent KATP channel activation. Our observations indicate that KATP channels play an adaptive role in maintaining myometrial artery vasodilator sensitivity under chronic hypoxic conditions during pregnancy. Thus, KATP channels represent potential therapeutic targets for augmenting uteroplacental blood flow and, in turn, preserving fetal growth in cases of uteroplacental hypoperfusion.


Assuntos
Doença da Altitude , Vasodilatação , Animais , Humanos , Feminino , Gravidez , Vasodilatação/fisiologia , Altitude , Canais de Potássio , Artérias/fisiologia , Hipóxia , Trifosfato de Adenosina
6.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R694-R699, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36094446

RESUMO

In healthy near-term women, blood flow to the uteroplacental circulation is estimated as 841 mL/min, which is greater than in other mammalian species. We argue that as uterine venous Po2 sets the upper limit for O2 diffusion to the fetus, high uterine artery blood flow serves to narrow the maternal arterial-to-uterine venous Po2 gradient and thereby raise uterine vein Po2. In support, we show that the reported levels for uterine artery blood flow agree with what is required to maintain normal fetal growth. Although residence at high altitudes (>2,500 m) depresses fetal growth, not all populations are equally affected; Tibetans and Andeans have higher levels of uterine artery blood flow than newcomers and exhibit normal fetal growth. Estimates of uterine venous Po2 from the umbilical blood-gas data available from healthy Andean pregnancies indicate that their high levels of uterine artery blood flow are consistent with their reported, normal birth weights. Unknown, however, are the effects on placental gas exchange of the lower levels of uterine artery blood flow seen in high-altitude newcomers or hypoxia-associated pregnancy complications. We speculate that, by widening the maternal artery to uterine vein Po2 gradient, lower levels of uterine artery blood flow prompt metabolic changes that slow fetal growth to match O2 supply.


Assuntos
Placenta , Circulação Placentária , Animais , Humanos , Gravidez , Feminino , Placenta/metabolismo , Artéria Uterina/metabolismo , Oxigênio , Desenvolvimento Fetal/fisiologia , Mamíferos/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 320(3): H980-H990, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33416457

RESUMO

Perinatal hypoxia induces permanent structural and functional changes in the lung and its pulmonary circulation that are associated with the development of pulmonary hypertension (PH) in later life. The mechanistic target of the rapamycin (mTOR) pathway is vital for fetal lung development and is implicated in hypoxia-associated PH, yet its involvement in the developmental programming of PH remains unclear. Pregnant C57/BL6 dams were placed in hyperbaric (760 mmHg) or hypobaric chambers during gestation (505 mmHg, day 15 through postnatal day 4) or from weaning through adulthood (420 mmHg, postnatal day 21 through 8 wk). Pulmonary hemodynamics and right ventricular systolic pressure (RVSP) were measured at 8 wk. mTOR pathway proteins were assessed in fetal (day 18.5) and adult lung (8 wk). Perinatal hypoxia induced PH during adulthood, even in the absence of a sustained secondary hypoxic exposure, as indicated by reduced pulmonary artery acceleration time (PAAT) and peak flow velocity through the pulmonary valve, as well as greater RVSP, right ventricular (RV) wall thickness, and RV/left ventricular (LV) weight. Such effects were independent of increased blood viscosity. In fetal lung homogenates, hypoxia reduced the expression of critical downstream mTOR targets, most prominently total and phosphorylated translation repressor protein (4EBP1), as well as vascular endothelial growth factor, a central regulator of angiogenesis in the fetal lung. In contrast, adult offspring of hypoxic dams tended to have elevated p4EBP1 compared with controls. Our data suggest that inhibition of mTORC1 activity in the fetal lung as a result of gestational hypoxia may interrupt pulmonary vascular development and thereby contribute to the developmental programming of PH.NEW & NOTEWORTHY We describe the first study to evaluate a role for the mTOR pathway in the developmental programming of pulmonary hypertension. Our findings suggest that gestational hypoxia impairs mTORC1 activation in the fetal lung and may impede pulmonary vascular development, setting the stage for pulmonary vascular disease in later life.


Assuntos
Hipóxia Fetal/complicações , Hipertensão Pulmonar/etiologia , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neovascularização Fisiológica , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Modelos Animais de Doenças , Feminino , Hipóxia Fetal/metabolismo , Hipóxia Fetal/fisiopatologia , Idade Gestacional , Hemodinâmica , Oxigenoterapia Hiperbárica , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Camundongos Endogâmicos C57BL , Fosforilação , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Circulação Pulmonar , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Função Ventricular Direita , Pressão Ventricular
8.
FASEB J ; 34(3): 4283-4292, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31970838

RESUMO

The environmental hypoxia of high altitude (HA) increases the incidence of intrauterine growth restriction (IUGR) approximately threefold. The peroxisome proliferator-activated receptor γ (PPAR-γ), a ligand-activated nuclear receptor that promotes vasorelaxation by increasing nitric oxide and downregulating endothelin-1 (ET-1) production, has been implicated in IUGR. Based on our prior work indicating that pharmacologic activation of the PPARγ pathway protects against hypoxia-associated IUGR, we used an experimental murine model to determine whether such effects may be attributed to vasodilatory effects in the uteroplacental circulation. Using wire myography, ex vivo vasoreactivity studies were conducted in uterine arteries (UtA) isolated from pregnant mice exposed to hypoxia or normoxia from gestational day 14.5 to 18.5. Exposure to troglitazone, a high-affinity PPARγ agonist-induced vasorelaxation in UtA preconstricted with phenylephrine, with HA-UtA showing increased sensitivity. Troglitazone blunted ET-1-induced contraction of UtA in hypoxic and normoxic dams equivalently. Immunohistological analysis revealed enhanced staining for ET-1 receptors in the placental labyrinthine zone in hypoxic compared to normoxic dams. Our results suggest that pharmacologic PPAR-γ activation, via its vasoactive properties, may protect the fetal growth under hypoxic conditions by improving uteroplacental perfusion and thereby justify further investigation into PPARγ as a therapeutic target for IUGR in pregnancies complicated by hypoxia.


Assuntos
Endotelina-1/metabolismo , PPAR gama/metabolismo , Placenta/metabolismo , Artéria Uterina/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/metabolismo , Hipóxia/metabolismo , Imuno-Histoquímica , Camundongos , Fenilefrina/farmacologia , Placenta/efeitos dos fármacos , Gravidez , Tiazolidinedionas/farmacologia , Troglitazona/farmacologia , Artéria Uterina/efeitos dos fármacos
9.
J Physiol ; 598(18): 4093-4105, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32592403

RESUMO

KEY POINTS: Pregnancy at high altitude is associated with a greater incidence of fetal growth restriction due, in part, to lesser uterine artery blood flow. AMP-activated protein kinase (AMPK) activation vasodilates arteries and may increase uterine artery blood flow. In this study, pharmacological activation of AMPK by the drug AICAR improved fetal growth and elevated uterine artery blood flow. These results suggest that AMPK activation is a potential strategy for improving fetal growth and raising uterine artery blood flow in pregnancy, which may be important in pregnancy disorders characterized by uteroplacental ischaemia and/or fetal hypoxia. ABSTRACT: Uteroplacental hypoxia is associated with pregnancy disorders such as intrauterine growth restriction and preeclampsia, which are characterized by uteroplacental ischaemia and/or fetal hypoxia. Activation of AMP-activated protein kinase (AMPK) results in vasodilatation and is therefore a potential therapeutic strategy for restoring uteroplacental perfusion in pregnancy disorders. In this study, C57Bl/6 mice were treated with subcutaneous pellets containing vehicle, the AMPK activator AICAR (200 mg kg-1 day-1 ), or the AMPK inhibitor Compound C (20 mg kg-1 day-1 ) beginning on gestational day 13.5, and were exposed to hypoxia starting on gestational day 14.5 that induced intrauterine growth restriction. Pharmacological AMPK activation by AICAR partially prevented hypoxia-induced fetal growth restriction (P < 0.01), due in part to increased uterine artery blood flow (P < 0.0001). The proportion of total cardiac output flowing through the uterine artery was increased with AICAR in hypoxic mice (P < 0.001), suggesting that the vasodilator effect of AICAR was selective for the uterine circulation. Further, pharmacological inhibition of AMPK with Compound C reduced uterine artery diameter and increased uterine artery contractility in normoxic mice, providing evidence that physiological levels of AMPK activation are necessary for vasodilatation in healthy pregnancy. Two-way ANOVA analyses indicated that hypoxia reduced AMPK activation in the uterine artery and placenta, and AICAR increased AMPK activation in these tissues compared to vehicle. These findings provide support for further investigation into the utility of pharmacological AMPK activation for treatment of fetal growth restriction.


Assuntos
Retardo do Crescimento Fetal , Artéria Uterina , Proteínas Quinases Ativadas por AMP , Aminoimidazol Carboxamida/análogos & derivados , Animais , Feminino , Retardo do Crescimento Fetal/tratamento farmacológico , Hipóxia , Camundongos , Circulação Placentária , Gravidez , Ribonucleotídeos
10.
Am J Hum Genet ; 101(5): 752-767, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100088

RESUMO

The increase in red blood cell mass (polycythemia) due to the reduced oxygen availability (hypoxia) of residence at high altitude or other conditions is generally thought to be beneficial in terms of increasing tissue oxygen supply. However, the extreme polycythemia and accompanying increased mortality due to heart failure in chronic mountain sickness most likely reduces fitness. Tibetan highlanders have adapted to high altitude, possibly in part via the selection of genetic variants associated with reduced polycythemic response to hypoxia. In contrast, high-altitude-adapted Quechua- and Aymara-speaking inhabitants of the Andean Altiplano are not protected from high-altitude polycythemia in the same way, yet they exhibit other adaptive features for which the genetic underpinnings remain obscure. Here, we used whole-genome sequencing to scan high-altitude Andeans for signals of selection. The genes showing the strongest evidence of selection-including BRINP3, NOS2, and TBX5-are associated with cardiovascular development and function but are not in the response-to-hypoxia pathway. Using association mapping, we demonstrated that the haplotypes under selection are associated with phenotypic variations related to cardiovascular health. We hypothesize that selection in response to hypoxia in Andeans could have vascular effects and could serve to mitigate the deleterious effects of polycythemia rather than reduce polycythemia itself.


Assuntos
Adaptação Fisiológica/genética , Doença da Altitude/genética , Sistema Cardiovascular/fisiopatologia , Seleção Genética/genética , Idoso , Idoso de 80 Anos ou mais , Altitude , Feminino , Estudo de Associação Genômica Ampla/métodos , Haplótipos/genética , Insuficiência Cardíaca/genética , Humanos , Hipóxia/genética , Masculino , Pessoa de Meia-Idade , Policitemia/genética , Polimorfismo de Nucleotídeo Único/genética
11.
Am J Physiol Heart Circ Physiol ; 319(1): H203-H212, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32502374

RESUMO

High-altitude (>2,500 m) residence increases the incidence of intrauterine growth restriction (IUGR) due, in part, to reduced uterine artery blood flow and impaired myometrial artery (MA) vasodilator response. A role for the AMP-activated protein kinase (AMPK) pathway in protecting against hypoxia-associated IUGR is suggested by genomic and transcriptomic studies in humans and functional studies in mice. AMPK is a hypoxia-sensitive metabolic sensor with vasodilatory properties. Here we hypothesized that AMPK-dependent vasodilation was increased in MAs from high versus low-altitude (<1,700 m) Colorado women with appropriate for gestational age (AGA) pregnancies and reduced in IUGR pregnancies regardless of altitude. Vasoreactivity studies showed that, in AGA pregnancies, MAs from high-altitude women were more sensitive to vasodilation by activation of AMPK with A769662 due chiefly to increased endothelial nitric oxide production, whereas MA responses to AMPK activation in the low-altitude women were endothelium independent. MAs from IUGR compared with AGA pregnancies had blunted vasodilator responses to acetylcholine at high altitude. We concluded that 1) blunted vasodilator responses in IUGR pregnancies confirm the importance of MA vasodilation for normal fetal growth and 2) the increased sensitivity to AMPK activation in AGA pregnancies at high altitude suggests that AMPK activation helped maintain MA vasodilation and fetal growth. These results highlight a novel mechanism for vasodilation of MAs under conditions of chronic hypoxia and suggest that AMPK activation could provide a therapy for increasing uteroplacental blood flow and improving fetal growth in IUGR pregnancies.NEW & NOTEWORTHY Intrauterine growth restriction (IUGR) impairs infant well- being and increases susceptibility to later-in-life diseases for mother and child. Our study reveals a novel role for AMPK in vasodilating the myometrial artery (MA) from women residing at high altitude (>2,500 m) with appropriate for gestational age pregnancies but not in IUGR pregnancies at any altitude.


Assuntos
Doença da Altitude/metabolismo , Artérias/metabolismo , Retardo do Crescimento Fetal/metabolismo , Miométrio/irrigação sanguínea , Proteínas Quinases/metabolismo , Vasodilatação , Quinases Proteína-Quinases Ativadas por AMP , Adulto , Doença da Altitude/fisiopatologia , Artérias/efeitos dos fármacos , Artérias/fisiopatologia , Compostos de Bifenilo , Feminino , Retardo do Crescimento Fetal/fisiopatologia , Humanos , Óxido Nítrico/metabolismo , Gravidez , Pironas/farmacologia , Tiofenos/farmacologia
12.
Biol Reprod ; 102(3): 660-670, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31711123

RESUMO

Incomplete maternal vascular responses to pregnancy contribute to pregnancy complications including intrauterine growth restriction (IUGR) and preeclampsia. We aimed to characterize maternal vascular dysfunction in a murine model of fetal growth restriction as an approach toward identifying targetable pathways for improving pregnancy outcomes. We utilized a murine model of late-gestation hypoxia-induced IUGR that reduced E18.5 fetal weight by 34%. Contrary to our hypothesis, uterine artery blood flow as measured in vivo by Doppler ultrasound was increased in mice housed under hypobaric hypoxia (385 mmHg; 5500 m) vs normoxia (760 mmHg; 0 m). Using wire myography, uterine arteries isolated from hypoxic mice had similar vasodilator responses to the two activators A769662 and acetylcholine as those from normoxic mice, although the contribution of an increase in nitric oxide production to uterine artery vasodilation was reduced in the hypoxic vs normoxic groups. Vasoconstrictor responses to phenylephrine and potassium chloride were unaltered by hypoxia. The levels of activated adenosine monophosphate-activated protein kinase (AMPK) were reduced with hypoxia in both the uterine artery and placenta as measured by western blot and immunohistochemistry. We concluded that the rise in uterine artery blood flow may be compensatory to hypoxia but was not sufficient to prevent fetal growth restriction. Although AMPK signaling was reduced by hypoxia, AMPK was still receptive to pharmacologic activation in the uterine arteries in which it was a potent vasodilator. Thus, AMPK activation may represent a new therapy for pregnancy complications involving reduced uteroplacental perfusion.


Assuntos
Retardo do Crescimento Fetal/fisiopatologia , Hipóxia/fisiopatologia , Circulação Placentária/fisiologia , Artéria Uterina/fisiologia , Acetilcolina/farmacologia , Animais , Feminino , Retardo do Crescimento Fetal/diagnóstico por imagem , Hipóxia/diagnóstico por imagem , Camundongos , Fenilefrina/farmacologia , Circulação Placentária/efeitos dos fármacos , Gravidez , Ultrassonografia Doppler , Artéria Uterina/diagnóstico por imagem , Artéria Uterina/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
13.
FASEB J ; 33(8): 8999-9007, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31039323

RESUMO

The hypoxia of high-altitude (HA) residence increases the risk of intrauterine growth restriction (IUGR) and preeclampsia 3-fold, augmenting perinatal morbidity and mortality and the risk for childhood and adult disease. Currently, no effective therapies exist to prevent these vascular disorders of pregnancy. The peroxisome proliferator-activated receptor γ (PPAR-γ) is an important regulator of uteroplacental vascular development and function and has been implicated in the pathogenesis of IUGR and preeclampsia. Here, we used a model of HA pregnancy in mice to determine whether hypoxia-induced fetal growth restriction reduces placental PPAR-γ protein expression and placental vascularization and, if so, to evaluate the effectiveness of the selective PPAR-γ agonist pioglitazone (PIO) for preventing hypoxia-induced IUGR. Hypoxia resulted in asymmetric IUGR, placental insufficiency, and reduced placental PPAR-γ expression; PIO prevented approximately half of the fetal growth restriction and attenuated placental insufficiency. PIO did not affect fetal growth under normoxia. Although PIO was beneficial for fetal growth, PIO treatment reduced placental vascular density of the labrynthine zone in normoxic and hypoxic (Hx) conditions, and mean vascular area was reduced in the Hx group. Our results suggest that pharmacological PPAR-γ activation is a potential strategy for preventing IUGR in pregnancies complicated by hypoxia, although further studies are needed to identify its likely metabolic or vascular mechanisms.-Lane, S. L., Dodson, R. B., Doyle, A. S., Park, H., Rathi, H., Matarrazo, C. J., Moore, L. G., Lorca, R. A., Wolfson, G. H., Julian, C. G. Pharmacological activation of peroxisome proliferator-activated receptor γ (PPAR-γ) protects against hypoxia-associated fetal growth restriction.


Assuntos
Retardo do Crescimento Fetal/prevenção & controle , Hipóxia Fetal/complicações , PPAR gama/agonistas , Pioglitazona/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Doença da Altitude/complicações , Animais , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Placenta/irrigação sanguínea , Placenta/efeitos dos fármacos , Placenta/metabolismo , Insuficiência Placentária/etiologia , Insuficiência Placentária/metabolismo , Insuficiência Placentária/prevenção & controle , Pré-Eclâmpsia/etiologia , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/prevenção & controle , Gravidez
14.
J Physiol ; 597(14): 3687-3696, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31106429

RESUMO

KEY POINTS: Normotensive pregnancy is associated with elevated sympathetic nervous system activity yet normal or reduced blood pressure. It represents a unique period of apparent healthy sympathetic hyperactivity. The present study models the blood pressure and heart rate (ECG R-R interval) responses to fluctuations in sympathetic nervous system activity aiming to understand neurocardiovascular transduction. The reported data clearly demonstrate that transduction of sympathetic nervous system signalling to systemic cardiovascular outcomes is reduced in normotensive pregnancy. These data are important for understanding how blood pressure regulation adapts during normotensive pregnancy and set the foundation for exploring similar mechanisms in hypertensive pregnancies. ABSTRACT: Previously, we described sympathetic nervous system hyperactivity yet decreased blood pressure responses to stress in normotensive pregnancy. To address the hypothesis that pregnant women have blunted neurocardiovascular transduction we assessed the relationship between spontaneous bursts of sympathetic nerve activity (SNA) and fluctuations in mean arterial blood pressure and R-R interval. Resting SNA, blood pressure and ECG were obtained in pregnant (third trimester, n = 18) and non-pregnant (n = 18) women matched for age and pre-/non-pregnant body mass index. Custom software modelled beat-by-beat pressure (photoplethysmography) and R-R interval in relation to sequences of SNA bursts and non-bursts (peroneal microneurography). Sequences were grouped by the number of bursts and non-bursts [singlets, doublets, triplets and quadruplet (four or more)] and mean blood pressure and R-R interval were tracked for 15 subsequent cardiac cycles. Similar sequences were overlaid and averaged. Peak mean pressure in relation to sequences of SNA was reduced in pregnant vs. non-pregnant women (doublets: 1.6 ± 1.1 mmHg vs. 3.6 ± 3.1 mmHg, P < 0.05; triplets: 2.4 ± 1.2 mmHg vs. 3.4 ± 2.1 mmHg, P < 0.05; quadruplets: 3.0 ± 1.0 mmHg vs. 5.5 ± 3.7 mmHg, P < 0.05). The nadir R-R interval following burst sequences was also smaller in pregnant vs. non-pregnant women (singlets: -0.01 ± 0.01 s vs. -0.04 ± 0.04 s, P < 0.05; doublets: -0.02 ± 0.03 s vs. -0.05 ± 0.04 s, P < 0.05; triplets: -0.02 ± 0.01 s vs. -0.07 ± 0.04 s, P < 0.05; quadruplets: -0.01 ± 0.01 s vs. -0.09 ± 0.09 s, P < 0.05). There were no differences between groups in the mean arterial pressure and R-R interval responses to non-burst sequences. Our data clearly indicate blunted systemic neurocardiovascular transduction during normotensive pregnancy. We propose that blunted transduction is a positive adaptation protecting pregnant women from the cardiovascular consequences of sympathetic hyperactivity.


Assuntos
Sistema Nervoso Simpático/fisiologia , Adulto , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Feminino , Frequência Cardíaca/fisiologia , Humanos , Gravidez , Terceiro Trimestre da Gravidez/fisiologia , Descanso/fisiologia
15.
Matern Child Health J ; 23(11): 1573-1580, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31243627

RESUMO

Objectives Colorado's relatively high altitudes have been reported to lower birth weight but the most recent studies were conducted 20 years ago. Since then, the accuracy for assigning altitude of residence has been improved with the use of geocoding, and recommendations for pregnancy weight gain have changed. We therefore sought to determine whether currently, residence at high altitude (≥ 2500 m, 8250 ft) lowers birth weight in Colorado. Methods Birth certificate data for all live births (n = 670,017) to Colorado residents from 2007 to 2016 were obtained from the Colorado Department of Public Health and Environment. Geocoded altitude of maternal residence for the current birth was assigned to each birth record. Linear and logistic regression models were used to examine the effects of altitude on birth weight or low birth weight (< 2500 g) while controlling for other factors affecting birth weight, including pregnancy weight gain. Results Compared to low altitude, infants born at high altitude weighed 118 g less and were more often low birth weight (8.8% vs. 11.7%, p < 0.05). After accounting for other factors influencing birth weight, high altitude reduced birth weight by 101 g and increased the risk of low birth weight by 27%. The only factors with larger impacts on birth weight were hypertensive disorders of pregnancy and cigarette use during pregnancy. Conclusions for Practice High altitude remains an important determinant of elevated LBW rates in Colorado, and likely contributes to Colorado's comparative resistance towards meeting the Healthy People 2010/2020 nationwide goal to reduce the low birth weight rate to 7.2% by 2020.


Assuntos
Altitude , Peso ao Nascer/fisiologia , Resultado da Gravidez/epidemiologia , Adulto , Colorado/epidemiologia , Feminino , Mapeamento Geográfico , Humanos , Estudos Longitudinais , Gravidez
16.
Am J Physiol Regul Integr Comp Physiol ; 314(2): R153-R160, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29046311

RESUMO

In pathological populations, elevated sympathetic activity is associated with increased activity of individual sympathetic neurons. We used custom action potential detection software to analyze multiunit sympathetic activity in 18 normotensive pregnant women (third trimester; 33 ± 5 wk) and 19 nonpregnant women at rest and a subset (10 and 13, respectively) during a cold pressor challenge. Although the number of action potentials per burst and number of active amplitude-based "clusters" were not different between groups, the total number of sympathetic action potentials per minute was higher in pregnant women at rest. Individual clusters were active predominately once per burst, suggesting they represent single neurons. Action potentials occurred in closer succession in normotensive pregnant (interspike interval 36 ± 10 ms) versus nonpregnant women (50 ± 27 ms; P < 0.001) at rest. Pregnant women had a lower total peripheral resistance (11.7 ± 3.0 mmHg·l-1·min) than nonpregnant women (15.1 ± 2.7 mmHg·l-1·min; P < 0.001), indicating a blunted neurovascular transduction. The cold pressor reduced the number of action potentials per burst in both groups due to shortening of the R-R interval in conjunction with increased burst frequency; total neural firing per minute was unchanged. Thus elevated sympathetic activity during normotensive pregnancy is specific to increased incidence of multiunit bursts. This is likely due to decreased central gating of burst output as opposed to generalized increases in central drive. These data also reinforce the concept that pregnancy appears to be the only healthy state of chronic sympathetic hyperactivity of which we are aware.


Assuntos
Músculo Esquelético/inervação , Nervo Fibular/fisiologia , Sistema Nervoso Simpático/fisiologia , Potenciais de Ação , Estudos de Casos e Controles , Temperatura Baixa , Potencial Evocado Motor , Feminino , Humanos , Gravidez , Recrutamento Neurofisiológico , Fatores de Tempo
17.
Circulation ; 134(5): 405-21, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27482003

RESUMO

BACKGROUND: High altitude is a challenging condition caused by insufficient oxygen supply. Inability to adjust to hypoxia may lead to pulmonary edema, stroke, cardiovascular dysfunction, and even death. Thus, understanding the molecular basis of adaptation to high altitude may reveal novel therapeutics to counteract the detrimental consequences of hypoxia. METHODS: Using high-throughput, unbiased metabolomic profiling, we report that the metabolic pathway responsible for production of erythrocyte 2,3-bisphosphoglycerate (2,3-BPG), a negative allosteric regulator of hemoglobin-O2 binding affinity, was significantly induced in 21 healthy humans within 2 hours of arrival at 5260 m and further increased after 16 days at 5260 m. RESULTS: This finding led us to discover that plasma adenosine concentrations and soluble CD73 activity rapidly increased at high altitude and were associated with elevated erythrocyte 2,3-BPG levels and O2 releasing capacity. Mouse genetic studies demonstrated that elevated CD73 contributed to hypoxia-induced adenosine accumulation and that elevated adenosine-mediated erythrocyte A2B adenosine receptor activation was beneficial by inducing 2,3-BPG production and triggering O2 release to prevent multiple tissue hypoxia, inflammation, and pulmonary vascular leakage. Mechanistically, we demonstrated that erythrocyte AMP-activated protein kinase was activated in humans at high altitude and that AMP-activated protein kinase is a key protein functioning downstream of the A2B adenosine receptor, phosphorylating and activating BPG mutase and thus inducing 2,3-BPG production and O2 release from erythrocytes. Significantly, preclinical studies demonstrated that activation of AMP-activated protein kinase enhanced BPG mutase activation, 2,3-BPG production, and O2 release capacity in CD73-deficient mice, in erythrocyte-specific A2B adenosine receptor knockouts, and in wild-type mice and in turn reduced tissue hypoxia and inflammation. CONCLUSIONS: Together, human and mouse studies reveal novel mechanisms of hypoxia adaptation and potential therapeutic approaches for counteracting hypoxia-induced tissue damage.


Assuntos
Proteínas Quinases Ativadas por AMP/sangue , Adaptação Fisiológica/fisiologia , Doença da Altitude/sangue , Eritrócitos/metabolismo , Receptor A2B de Adenosina/sangue , 2,3-Difosfoglicerato/sangue , 5'-Nucleotidase/sangue , 5'-Nucleotidase/deficiência , Lesão Pulmonar Aguda/fisiopatologia , Adenosina/sangue , Adulto , Doença da Altitude/enzimologia , Doença da Altitude/fisiopatologia , Animais , Bisfosfoglicerato Mutase/sangue , Ativação Enzimática , Proteínas Ligadas por GPI/sangue , Humanos , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/sangue , Fosforilação , Processamento de Proteína Pós-Traducional
18.
Am J Physiol Heart Circ Physiol ; 313(4): H782-H787, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28733450

RESUMO

Healthy, normotensive human pregnancies are associated with striking increases in both plasma volume and vascular sympathetic nerve activity (SNA). In nonpregnant humans, volume-regulatory factors including plasma osmolality, vasopressin, and the renin-angiotensin-aldosterone system have important modulatory effects on control of sympathetic outflow. We hypothesized that pregnancy would be associated with changes in the relationships between SNA (measured as muscle SNA) and volume-regulating factors, including plasma osmolality, plasma renin activity, and arginine vasopressin (AVP). We studied 46 healthy, normotensive young women (23 pregnant and 23 nonpregnant). We measured SNA, arterial pressure, plasma osmolality, plasma renin activity, AVP, and other volume-regulatory factors in resting, semirecumbent posture. Pregnant women had significantly higher resting SNA (38 ± 12 vs. 23 ± 6 bursts/min in nonpregnant women), lower osmolality, and higher plasma renin activity and aldosterone (all P < 0.05). Group mean values for AVP were not different between groups [4.64 ± 2.57 (nonpregnant) vs. 5.17 ± 2.03 (pregnant), P > 0.05]. However, regression analysis detected a significant relationship between individual values for SNA and AVP in pregnant (r = 0.71, P < 0.05) but not nonpregnant women (r = 0.04). No relationships were found for other variables. These data suggest that the link between AVP release and resting SNA becomes stronger in pregnancy, which may contribute importantly to blood pressure regulation in healthy women during pregnancy.NEW & NOTEWORTHY Sympathetic nerve activity and blood volume are both elevated during pregnancy, but blood pressure is usually normal. Here, we identified a relationship between vasopressin and sympathetic nerve activity in pregnant but not nonpregnant women. This may provide mechanistic insights into blood pressure regulation in normal pregnancy and in pregnancy-related hypertension.


Assuntos
Volume Sanguíneo/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Gravidez/fisiologia , Sistema Nervoso Simpático/fisiologia , Adulto , Aldosterona/sangue , Arginina Vasopressina/sangue , Pressão Sanguínea/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Concentração Osmolar , Postura/fisiologia , Renina/sangue , Adulto Jovem
19.
J Proteome Res ; 15(10): 3883-3895, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27646145

RESUMO

Red blood cells (RBCs) are key players in systemic oxygen transport. RBCs respond to in vitro hypoxia through the so-called oxygen-dependent metabolic regulation, which involves the competitive binding of deoxyhemoglobin and glycolytic enzymes to the N-terminal cytosolic domain of band 3. This mechanism promotes the accumulation of 2,3-DPG, stabilizing the deoxygenated state of hemoglobin, and cytosol acidification, triggering oxygen off-loading through the Bohr effect. Despite in vitro studies, in vivo adaptations to hypoxia have not yet been completely elucidated. Within the framework of the AltitudeOmics study, erythrocytes were collected from 21 healthy volunteers at sea level, after exposure to high altitude (5260 m) for 1, 7, and 16 days, and following reascent after 7 days at 1525 m. UHPLC-MS metabolomics results were correlated to physiological and athletic performance parameters. Immediate metabolic adaptations were noted as early as a few hours from ascending to >5000 m, and maintained for 16 days at high altitude. Consistent with the mechanisms elucidated in vitro, hypoxia promoted glycolysis and deregulated the pentose phosphate pathway, as well purine catabolism, glutathione homeostasis, arginine/nitric oxide, and sulfur/H2S metabolism. Metabolic adaptations were preserved 1 week after descent, consistently with improved physical performances in comparison to the first ascendance, suggesting a mechanism of metabolic memory.


Assuntos
Adaptação Fisiológica , Doença da Altitude/metabolismo , Eritrócitos/metabolismo , Aclimatação/fisiologia , Adulto , Altitude , Doença da Altitude/fisiopatologia , Arginina/metabolismo , Glutationa/metabolismo , Glicólise , Voluntários Saudáveis , Humanos , Via de Pentose Fosfato , Purinas/metabolismo , Enxofre/metabolismo , Fatores de Tempo , Adulto Jovem
20.
Biochim Biophys Acta ; 1843(11): 2528-42, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24983771

RESUMO

Complex organisms may coordinate molecular responses to hypoxia by specialized avenues of communication across multiple tissues, but these mechanisms are poorly understood. Plasma-based, extracellular microRNAs have been described, yet their regulation and biological functions in hypoxia remain enigmatic. We found a unique pattern of release of the hypoxia-inducible microRNA-210 (miR-210) from hypoxic and reoxygenated cells. This microRNA is also elevated in human plasma in physiologic and pathologic conditions of altered oxygen demand and delivery. Released miR-210 can be delivered to recipient cells, and the suppression of its direct target ISCU and mitochondrial metabolism is primarily evident in hypoxia. To regulate these hypoxia-specific actions, prolyl-hydroxylation of Argonaute 2 acts as a molecular switch that reciprocally modulates miR-210 release and intracellular activity in source cells as well as regulates intracellular activity in recipient cells after miR-210 delivery. Therefore, Argonaute 2-dependent control of released miR-210 represents a unique communication system that integrates the hypoxic response across anatomically distinct cells, preventing unnecessary activity of delivered miR-210 in normoxia while still preparing recipient tissues for incipient hypoxic stress and accelerating adaptation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA