Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mol Recognit ; 35(10): e2979, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35642097

RESUMO

Infections caused by the bacteria Enterococcus faecalis (also known as E. faecalis) are common in hospitals. This bacterium is resistant to a wide range of medicines and causes a variety of nosocomial infections. An increase in the number of infections caused by multidrug-resistant (MDR) bacteria is causing substantial economic and health issues around the world. Consequently, new therapeutic techniques to tackle the growing threat of E. faecalis infections must be developed as soon as possible. In this regard, we have targeted a protein that is regarded to be critical for the survival of bacteria in this experiment. Homoserine kinase (HSK) is a threonine metabolism enzyme that belongs to the GHMP kinase superfamily. It is a crucial enzyme in threonine metabolism. This enzyme is responsible for a critical step in the threonine biosynthesis pathway. Given the important function that E. faecalis Homoserine Kinase (ESK) plays in bacterial metabolism, we report here cloning, expression, purification and structural studies of E. faecalis HSK using homology modelling. In addition, we have reported on the model's molecular docking and Molecular Dynamic Stimulation (MD Stimulation) investigations to validate the results of the docking experiments. The results were promising. In silico investigations came up with the conclusion: pheniramine has good binding affinity for the E. faecalis HSK.


Assuntos
Enterococcus faecalis , Feniramina , Antibacterianos , Enterococcus faecalis/genética , Simulação de Acoplamento Molecular , Feniramina/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool) , Treonina/metabolismo
2.
J Appl Microbiol ; 133(2): 287-310, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35396804

RESUMO

There is an intricate network of relations between endophytic fungi and their hosts that affects the production of various bioactive compounds. Plant-associated endophytic fungi contain industrially important enzymes and have the potential to fulfil their rapid demand in the international market to boost business in technology. Being safe and metabolically active, they have replaced the usage of toxic and harmful chemicals and hold a credible application in biotransformation, bioremediation and industrial processes. Despite these, there are limited reports on fungal endophytes that can directly cater to the demand and supply of industrially stable enzymes. The underlying reasons include low endogenous production and secretion of enzymes from fungal endophytes which have raised concern for widely accepted applications. Hence, it is imperative to augment the biosynthetic and secretory potential of fungal endophytes. Modern state-of-the-art biotechnological technologies aiming at strain improvement using cell factory engineering as well as precise gene editing like Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its Associated proteins (Cas) systems which can provide a boost in fungal endophyte enzyme production. Additionally, it is vital to characterize optimum conditions to grow one strain with multiple enzymes (OSME). The present review encompasses various plants-derived endophytic fungal enzymes and their applications in various sectors. Furthermore, we postulate the feasibility of new precision approaches with an aim for strain improvement and enhanced enzyme production.


Assuntos
Endófitos , Fungos , Biotecnologia , Endófitos/genética , Endófitos/metabolismo , Fungos/genética , Fungos/metabolismo
3.
Semin Cell Dev Biol ; 96: 77-90, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30951893

RESUMO

Phosphorus (P), an essential macronutrient, is pivotal for growth and development of plants. Availability of phosphate (Pi), the only assimilable P, is often suboptimal in rhizospheres. Pi deficiency triggers an array of spatiotemporal adaptive responses including the differential regulation of several transcription factors (TFs). Studies on MYB TF PHR1 in Arabidopsis thaliana (Arabidopsis) and its orthologs OsPHRs in Oryza sativa (rice) have provided empirical evidence of their significant roles in the maintenance of Pi homeostasis. Since the functional characterization of PHR1 in 2001, several other TFs have now been identified in these model plants. This raised a pertinent question whether there are any likely interactions across these TFs. Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system has provided an attractive paradigm for editing genome in plants. Here, we review the applications and challenges of this technique for genome editing of the TFs for deciphering the function and plausible interactions across them. This technology could thus provide a much-needed fillip towards engineering TFs for generating Pi use efficient plants for sustainable agriculture. Furthermore, we contemplate whether this technology could be a viable alternative to the controversial genetically modified (GM) rice or it may also eventually embroil into a limbo.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Homeostase/genética , Modelos Biológicos , Fosfatos/metabolismo , Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Variação Genética/genética , Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
4.
J Mol Recognit ; 34(9): e2894, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33719110

RESUMO

Enterococcus faecalis (E. faecalis) is a Gram-positive coccoid, non-sporulating, facultative anaerobic, multidrug resistance bacterium responsible for almost 65% to 80% of all enterococcal nosocomial infections. It usually causes infective endocarditis, urinary tract and surgical wound infections. The increase in E. faecalis resistance to conventionally available antibiotic has rekindled intense interest in developing useful antibacterial drugs. In E. faecalis, diaminopimelate epimerase (DapF) is involved in the lysine biosynthetic pathway. The product of this pathway is precursors of peptidoglycan synthesis, which is a component of bacterial cell wall. Also, because mammals lack this enzyme, consequently E. faecalis diaminopimelate epimerase (EfDapF) represents a potential target for developing novel class of antibiotics. In this regard, we have successfully cloned, overexpressed the gene encoding DapF in BL-21(DE3) and purified with Ni-NTA Agarose resin. In addition to this, binding studies were performed using fluorescence spectroscopy in order to confirm the bindings of the identified lead compounds (acetaminophen and dexamethasone) with EfDapF. Docking studies revealed that acetaminophen found to make hydrogen bonds with Asn72 and Asn13 while dexamethasone interacted by forming hydrogen bonds with Asn205 and Glu223. Thus, biochemical studies indicated acetaminophen and dexamethasone, as potential inhibitors of EfDapF and eventually can reduce the catalytic activity of EfDapF.


Assuntos
Acetaminofen/farmacologia , Isomerases de Aminoácido/antagonistas & inibidores , Dexametasona/farmacologia , Enterococcus faecalis/enzimologia , Simulação de Acoplamento Molecular , Isomerases de Aminoácido/química , Isomerases de Aminoácido/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Reposicionamento de Medicamentos , Enterococcus faecalis/efeitos dos fármacos , Conformação Proteica
5.
J Mol Recognit ; 34(6): e2886, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33393093

RESUMO

Entamoeba histolytica (Eh), a parasitic protozoan and the causative agent of invasive Amoebiasis, invade the host tissue through an effective secretory pathway. There are several lines of evidence suggesting that amoebic trophozoite pore-forming complex amoebapore and a large class of proteases enzymes including rhomboid proteases, cysteine proteases, and metalloproteases are implicated in host tissue invasion. For successful delivery of these molecules/cargos, trophozoites heavily rely on sorting machinery from the endoplasmic reticulum, Golgi to plasma membrane. Although, sole secretion machinery in E. histolytica is not characterized yet. Therefore, here our aim is to understand the properties of key molecules N-ethylmaleimide-sensitive fusion protein attached to protein receptors (SNAREs) in E. histolytica. SNAREs proteins are an important component of the membrane-trafficking machinery and have been associated in a range of processes including vesicle tethering, fusion as well as specificity of vesicular transport in all eukaryotic cells. SNARE proteins are architecturally simple, categorized by the presence of one copy of a homologous coiled-coil forming motif. However, the structural information and protein-protein interaction study of Eh-associated syntaxin proteins are still not known. Here, we characterize the syntaxin 1 like molecule and VAMP from Eh through physiochemical profiling, modeling, atomistic simulation, protein-protein interaction, and docking approaches on the proteins containing SNARE and synaptobrevin domain. The modeled structures and the critical residues recognized through protein interaction and docking study may provide better structural and functional insights into these proteins and may aid in the development of newer diagnostic assays.


Assuntos
Entamoeba histolytica/metabolismo , Mapas de Interação de Proteínas/fisiologia , Proteínas Qa-SNARE/metabolismo , Sequência de Aminoácidos , Membrana Celular/metabolismo , Membrana Celular/parasitologia , Células Eucarióticas/metabolismo , Células Eucarióticas/parasitologia , Canais Iônicos/metabolismo , Simulação de Acoplamento Molecular , Estudos Prospectivos , Proteínas de Protozoários/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismo
6.
Semin Cell Dev Biol ; 74: 123-132, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28903074

RESUMO

Availability of phosphate (Pi) is often limited in rhizospheres in different agroclimatic zones and adversely affects growth and development of plants. To circumvent this impasse, there is an urgent need and global consensus to develop Pi use efficient crops. To achieve this goal, it is essential to identify the molecular entities that exert regulatory influences on the sensing and signaling cascade governing Pi homeostasis. SIZ1 encodes a small ubiquitin-like modifier (SUMO E3) ligase, and plays a pivotal role in the post-translational SUMOylation of proteins. In this review, we discuss the reverse genetics approach conventionally used for providing circumstantial evidence towards the regulatory influences of SIZ1 on several morphophysiological and molecular traits that govern Pi homeostasis in taxonomically diverse Arabidopsis thaliana (Arabidopsis) and Oryza sativa (rice) model species. However, the efforts have been rather modest in identifying SUMO protein targets that play key roles in the maintenance of Pi homeostasis in these model plants contrary to the plethora of them now known in lower organisms and animals. Therefore, to predict the SIZ1-mediated SUMOylome involved in Pi homeostasis, the state-of-the-art high-throughput technologies often used for animals thus provide an attractive paradigm towards achieving the long-term goal of developing Pi use efficient crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Homeostase , Ligases/metabolismo , Oryza/metabolismo , Fosfatos/metabolismo , Sumoilação , Arabidopsis/química , Oryza/química
7.
J Mol Recognit ; 32(12): e2808, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31432591

RESUMO

The enteric protozoan parasite, Entamoeba histolytica (Eh), is the causative agent of amoebic dysentery and liver abscess in humans. It infects around 50 million people worldwide, which is a third general cause of death from parasitic diseases after malaria and schistosomiasis. The other prevalent form of the disease is Visceral leishmaniasis caused by Leishmania donovani which is a human blood parasite. On the other hand, the Toxoplasma gondii is an obligate intracellular protozoan parasite; it causes serious opportunistic infections in HIV-positive persons. The biological processes in all living organisms are mostly mediated by the proteins, and recognizing new target proteins and finding their function in pathogenesis will help in choosing better diagnostic markers. In eukaryotes, Rab protein plays a major role in pathogenesis. Rabs represent the largest branch in the Ras superfamily of GTPases. Among them, the Rab5 is important in the endocytosis and thus involved in pathogenesis. In this paper, we discussed the physiochemical profiling, modelling, and docking of the Rab5 protein from pathogenic species that is Entamoeba histolytica, Leishmania donovani, and Toxoplasma gondii. The modeled structures from this study and the key residues identified would give a better understanding of the three-dimensional structure and functional insights into these proteins and help in developing new drug targets.


Assuntos
Simulação por Computador , Entamoeba histolytica/metabolismo , Leishmania donovani/metabolismo , Toxoplasma/metabolismo , Proteínas rab5 de Ligação ao GTP/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Ligação de Hidrogênio , Ligantes , Simulação de Acoplamento Molecular , Homologia Estrutural de Proteína , Proteínas rab5 de Ligação ao GTP/genética
8.
J Mol Recognit ; 32(11): e2802, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31353747

RESUMO

Enterococcus faecalis is a gram-positive, rod-shape bacteria responsible for around 65% to 80% of all enterococcal nosocomial infections. It is multidrug resistant (MDR) bacterium resistant to most of the first-line antibiotics. Due to the emergence of MDR strains, there is an urgent need to find novel targets to develop new antibacterial drugs against E. faecalis. In this regard, we have identified naphthoate synthase (1,4-dihydroxy-2-naphthoyl-CoA synthase, EC: 4.1.3.36; DHNS) as an anti-E. faecalis target, as it is an essential enzyme for menaquinone (vitamin K2 ) synthetic pathway in the bacterium. Thus, inhibiting naphtholate synthase may consequently inhibit the bacteria's growth. In this regard, we report here cloning, expression, purification, and preliminary structural studies of naphthoate synthase along with in silico modeling, molecular dynamic simulation of the model and docking studies of naphthoate synthase with quercetin, a plant alkaloid. Biochemical studies have indicated quercetin, a plant flavonoid as the potential lead compound to inhibit catalytic activity of EfDHNS. Quercetin binding has also been validated by spectrofluorimetric studies in order to confirm the bindings of the ligand compound with EfDHNS at ultralow concentrations. Reported studies may provide a base for structure-based drug development of antimicrobial compounds against E. faecalis.


Assuntos
Enterococcus faecalis/enzimologia , Inibidores Enzimáticos/farmacologia , Hidroliases/antagonistas & inibidores , Quercetina/farmacologia , Clonagem Molecular , Simulação por Computador , Cristalização , Enterococcus faecalis/efeitos dos fármacos , Hidroliases/química , Hidroliases/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Quercetina/química
9.
Curr Pharm Des ; 30(3): 161-168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38243948

RESUMO

Sepsis is a complex clinical condition and a leading cause of death worldwide. During Sepsis, there is a derailment in the host response to infection, which can progress to severe sepsis and multiple organ dysfunction or failure, which leads to death. Free radicals, including reactive oxygen species (ROS) generated predominantly in mitochondria, are one of the key players in impairing normal organ function in sepsis. ROS contributing to oxidative stress has been reported to be the main culprit in the injury of the lung, heart, liver, kidney, gastrointestinal, and other organs. Here in the present review, we describe the generation, and essential properties of various types of ROS, their effect on macromolecules, and their role in mitochondrial dysfunction. Furthermore, the mechanism involved in the ROS-mediated pathogenesis of sepsis-induced organ dysfunction has also been discussed.


Assuntos
Doenças Mitocondriais , Sepse , Humanos , Espécies Reativas de Oxigênio , Insuficiência de Múltiplos Órgãos , Radicais Livres , Sepse/patologia , Estresse Oxidativo
10.
Brain Sci ; 14(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38928554

RESUMO

Protein kinase C (PKC) is a diverse enzyme family crucial for cell signalling in various organs. Its dysregulation is linked to numerous diseases, including cancer, cardiovascular disorders, and neurological problems. In the brain, PKC plays pivotal roles in synaptic plasticity, learning, memory, and neuronal survival. Specifically, PKC's involvement in Alzheimer's Disease (AD) pathogenesis is of significant interest. The dysregulation of PKC signalling has been linked to neurological disorders, including AD. This review elucidates PKC's pivotal role in neurological health, particularly its implications in AD pathogenesis and chronic alcohol addiction. AD, characterised by neurodegeneration, implicates PKC dysregulation in synaptic dysfunction and cognitive decline. Conversely, chronic alcohol consumption elicits neural adaptations intertwined with PKC signalling, exacerbating addictive behaviours. By unravelling PKC's involvement in these afflictions, potential therapeutic avenues emerge, offering promise for ameliorating their debilitating effects. This review navigates the complex interplay between PKC, AD pathology, and alcohol addiction, illuminating pathways for future neurotherapeutic interventions.

11.
Clin Chim Acta ; 562: 119891, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39067500

RESUMO

Sepsis is a life-threatening condition characterized by dysregulated host response to infection leading to organ dysfunction. Despite advances in understanding its pathology, sepsis remains a global health concern and remains a major contributor to mortality. Timely identification is crucial for improving clinical outcomes, as delayed treatment significantly impacts survival. Accordingly, biomarkers play a pivotal role in diagnosis, risk stratification, and management. This review comprehensively discusses various biomarkers in sepsis and their potential application in antimicrobial stewardship and risk assessment. Biomarkers such as white blood cell count, neutrophil to lymphocyte ratio, erythrocyte sedimentation rate, C-reactive protein, interleukin-6, presepsin, and procalcitonin have been extensively studied for their diagnostic and prognostic value as well as in guiding antimicrobial therapy. Furthermore, this review explores the role of biomarkers in risk stratification, emphasizing the importance of identifying high-risk patients who may benefit from specific therapeutic interventions. Moreover, the review discusses the emerging field of transcriptional diagnostics and metagenomic sequencing. Advances in sequencing have enabled the identification of host response signatures and microbial genomes, offering insight into disease pathology and aiding species identification. In conclusion, this review provides a comprehensive overview of the current understanding and future directions of biomarker-based approaches in sepsis diagnosis, management, and personalized therapy.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38291210

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) is a desirable gene modification tool covering a wide area in various sectors of medicine, agriculture, and microbial biotechnology. The role of this incredible genetic engineering technology has been extensively investigated; however, it remains formidable with cargo choices, nonspecific delivery, and insertional mutagenesis. Various nanomaterials including lipid, polymeric, and inorganic are being used to deliver the CRISPR-Cas system. Progress in nanomaterials could potentially address these challenges by accelerating precision targeting, cost-effectiveness, and one-step delivery. In this review, we highlighted the advances in nanotechnology and nanomaterials as smart delivery systems for CRISPR-Cas so as to ameliorate applications for environmental remediation including biomedical research and healthcare, strategies for mitigating antimicrobial resistance, and to be used as nanofertilizers for enhancing crop growth, and reducing the environmental impact of traditional fertilizers. The timely co-evolution of nanotechnology and CRISPR technologies has contributed to smart novel nanostructure hybrids for improving the onerous tasks of environmental remediation and biological sustainability.

13.
Int Immunopharmacol ; 118: 110100, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37011501

RESUMO

Entamoeba histolytica (Eh), a microaerophilic parasite, causes deadly enteric infections that result in Amoebiasis. Every year, the count of invasive infections reaches 50 million approximately and 40,000 to 1,00,000 deaths occurring due to amoebiasis are reported globally. Profound inflammation is the hallmark of severe amoebiasis which is facilitated by immune first defenders, neutrophils. Due to size incompatibility, neutrophils are unable to phagocytose Eh and thus, came up with the miraculous antiparasitic mechanism of neutrophil extracellular traps (NETs). This review provides an in-depth analysis of NETosis induced by Eh including the antigens involved in the recognition of Eh and the biochemistry of NET formation. Additionally, it underscores its novelty by describing the dual role of NETs in amoebiasis where it acts as a double-edged sword in terms of both clearing and exacerbating amoebiasis. It also provides a comprehensive account of the virulence factors discovered to date that are implicated directly and indirectly in the pathophysiology of Eh infections through the lens of NETs and can be interesting drug targets.


Assuntos
Entamoeba histolytica , Entamebíase , Armadilhas Extracelulares , Entamebíase/tratamento farmacológico , Entamebíase/epidemiologia , Entamebíase/fisiopatologia , Neutrófilos , Sistemas de Liberação de Medicamentos , Humanos , Antígenos Nucleares
14.
Diagnostics (Basel) ; 13(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36673087

RESUMO

Sepsis is one of the deadliest disorders in the new century due to specific limitations in early and differential diagnosis. Moreover, antimicrobial resistance (AMR) is becoming the dominant threat to human health globally. The only way to encounter the spread and emergence of AMR is through the active detection and identification of the pathogen along with the quantification of resistance. For better management of such disease, there is an essential requirement to approach many suitable diagnostic techniques for the proper administration of antibiotics and elimination of these infectious diseases. The current method employed for the diagnosis of sepsis relies on the conventional culture of blood suspected infection. However, this method is more time consuming and generates results that are false negative in the case of antibiotic pretreated samples as well as slow-growing microbes. In comparison to the conventional method, modern methods are capable of analyzing blood samples, obtaining accurate results from the suspicious patient of sepsis, and giving all the necessary information to identify the pathogens as well as AMR in a short period. The present review is intended to highlight the culture shift from conventional to modern and advanced technologies including their limitations for the proper and prompt diagnosing of bloodstream infections and AMR detection.

15.
Biochim Biophys Acta ; 1813(10): 1700-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21722677

RESUMO

Nitric oxide synthase (NOS) expression and catalytic status in human peripheral blood mononuclear cells (PBMCs) is debatable, while its sub-cellular distribution remains unascertained. The present study characterizes NOS transcripts by real time PCR, NOS protein by immunoprecipitation (IP)/Western blot (WB), nitric oxide (NO) generation by DAF-2DA and NOS sub-cellular distribution by immunogold electron microscopy in resting PBMCs, monocytes and lymphocytes obtained from healthy donors. We observed constitutive expression of full length NOS isoforms (nNOS, iNOS and eNOS) in PBMCs: with the highest expression of iNOS in comparison to nNOS and eNOS. Isolated monocytes expressed more eNOS transcript and protein as compared to nNOS and iNOS. Lymphocytes however had more iNOS transcripts and protein than nNOS and eNOS. NOS was catalytically active in PBMCs, monocytes as well as in lymphocytes as evident by NO generation in the presence of substrate and cofactors, which was significantly reduced in the presence of NOS inhibitor. Immunogold electron microscopy and morphometric analysis revealed the distinct pattern of NOS distribution in monocytes and lymphocytes and also exhibited differences in the nuclear-cytoplasmic ratio. nNOS localization was much more in the cytosol than in the nucleus among both monocytes and lymphocytes. Interestingly, iNOS distribution was comparable in both cytosol and nucleus among monocytes, but in lymphocytes iNOS was predominantly localized to the cytosol. The present study exhibits constitutive presence of all the NOS isoforms in PBMCs and reports the distinct pattern of NOS distribution among monocytes and lymphocytes.


Assuntos
Leucócitos Mononucleares/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Células Cultivadas , Clonagem Molecular , Humanos , Espaço Intracelular/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Leucócitos Mononucleares/ultraestrutura , Linfócitos/metabolismo , Linfócitos/ultraestrutura , Microscopia Eletrônica , Monócitos/metabolismo , Monócitos/ultraestrutura , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/química , Distribuição Tecidual
16.
Cytometry A ; 81(3): 238-47, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22170804

RESUMO

Neutrophils expel extracellular traps (NETs) to entrap and exterminate the invaded micro-organisms. Acute/chronic inflammatory disorders are often observed with aberrantly enhanced NETs formation and high nitric oxide (NO) availability. Recent study from this laboratory demonstrated release of NETs from human neutrophils following treatment with SNP or SNAP. This study is an extension of our previous finding to explore the extracellular bacterial killing, source of DNA in the expelled NETs, their ability to induce proinflammatory cytokines release from platelets/THP-1 cells, and assessment of NO-mediated free radical formation by using a consistent NO donor, DETA-NONOate. NO-mediated NETs exhibited extracellular bacterial killing as determined by colony forming units. NO-mediated NETs formation was due to the activation of NADPH oxidase and myeloperoxidase. NO- or PMA-mediated NETs were positive for both nuclear and mitochondrial DNA as well as proteolytic enzymes. Incubation of NETs with human platelets enhanced the release of IL-1ß and IL-8, while with THP-1 cells, release of IL-1ß, IL-8, and TNFα was observed. This study demonstrates that NO by augmenting enzymatic free radical generation release NETs to promote extracellular bacterial killing. These NETs were made up of mitochondrial and nuclear DNA and potentiated release of proinflammatory cytokines.


Assuntos
DNA Mitocondrial/metabolismo , DNA/metabolismo , Inflamação/imunologia , Ativação de Neutrófilo , Neutrófilos/citologia , Neutrófilos/metabolismo , Adulto , Plaquetas/metabolismo , Radicais Livres , Humanos , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Mitocôndrias/genética , NADPH Oxidases/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Peroxidase/metabolismo , Fator de Necrose Tumoral alfa
17.
Microbiol Res ; 261: 127061, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35605309

RESUMO

The regulation of the activity of proteases by endogenous inhibitors is a common trend in almost all forms of life. Here, we review the endogenous inhibitors of cysteine proteases of three major pathogenic parasitic protozoa. The review focuses on members of the genus Plasmodium, Entamoeba, and Leishmania. Research in this domain has revealed the presence of only chagasin-like inhibitors of cysteine proteases that house a ß-barrel immunoglobulin-fold and inhibit the target proteases using a 3-loop inhibitory mechanism in these pathogens. Inhibitors of cysteine proteases are highly evolvable enzymes that target a broad spectrum of pathogenic cysteine proteases with a proclivity for those involved in host-parasite interactions. A common trend reflects a limited sequence homology between cysteine proteases and their inhibitors. The inhibitors are also known to participate in other housekeeping functions of the parasites. Generalizations about their roles are thus best avoided. In this review, the reader will find comprehensive information on the cellular localization of inhibitors of cysteine proteases, their structure, function, and the associated mechanisms of action. The reader will also find a thorough analysis of the role of these inhibitors in parasite pathology and the common trends interlinking them with parasite biology and evolution.


Assuntos
Cisteína Proteases , Parasitos , Sequência de Aminoácidos , Animais , Inibidores de Cisteína Proteinase/farmacologia , Proteínas de Protozoários
18.
Biomed Res Int ; 2022: 5058121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309178

RESUMO

Chronic obstructive pulmonary disease (COPD) is pulmonary emphysema characterized by blockage in the airflow resulting in the long-term breathing problem, hence a major cause of mortality worldwide. Excessive generation of free radicals and the development of chronic inflammation are the major two episodes underlying the pathogenesis of COPD. Currently used drugs targeting these episodes including anti-inflammatory, antioxidants, and corticosteroids are unsafe, require high doses, and pose serious side effects. Nanomaterial-conjugated drugs have shown promising therapeutic potential against different respiratory diseases as they are required in small quantities which lower overall treatment costs and can be effectively targeted to diseased tissue microenvironment hence having minimal side effects. Poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) are safe as their breakdown products are easily metabolized in the body. Drugs loaded on the PLGA NPs have been shown to be promising agents as anticancer, antimicrobial, antioxidants, and anti-inflammatory. Surface modification of PLGA NPs can further improve their mechanical properties, drug loading potential, and pharmacological activities. In the present review, we have presented a brief insight into the pathophysiological mechanism underlying COPD and highlighted the role, potential, and current status of PLGA NPs loaded with drugs in the therapy of COPD.


Assuntos
Nanopartículas , Doença Pulmonar Obstrutiva Crônica , Antioxidantes/uso terapêutico , Portadores de Fármacos , Glicóis , Humanos , Ácido Láctico , Nanopartículas/uso terapêutico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
19.
Plants (Basel) ; 11(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432862

RESUMO

Moringa oleifera Lam. (MO) is a fast-growing drought-resistant tree belonging to the family Moringaceae and native to the Indian subcontinent and cultivated and/or naturalized worldwide with a semi-arid climate. MO is also popularly known as a miracle tree for its repertoire of nutraceutical, pharmacological, and phytochemical properties. The MO germplasm is collected, conserved, and maintained by various institutions across the globe. Various morphological, biochemical, and molecular markers are used for determining the genetic diversity in MO accessions. A higher yield of leaves and pods is often desirable for making various products with commercial viability and amenable for trade in the international market. Therefore, breeding elite varieties adapted to local agroclimatic conditions and in vitro propagation are viable and sustainable approaches. Here, we provide a comprehensive overview of MO germplasm conservation and various markers that are employed for assessing the genetic diversity among them. Further, breeding and in vitro propagation of MO for various desirable agronomic traits are discussed. Finally, trade and commerce of various functional and biofortified foods and non-food products are enumerated albeit with a need for a rigorous and stringent toxicity evaluation.

20.
Vaccines (Basel) ; 10(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36298439

RESUMO

Oxidative stress resulting from the disproportion of oxidants and antioxidants contributes to both physiological and pathological conditions in sepsis. To combat this, the antioxidant defense system comes into the picture, which contributes to limiting the amount of reactive oxygen species (ROS) leading to the reduction of oxidative stress. However, a strong relationship has been found between scavengers of ROS and antioxidants in preclinical in vitro and in vivo models. ROS is widely believed to cause human pathology most specifically in sepsis, where a small increase in ROS levels activates signaling pathways to initiate biological processes. An inclusive understanding of the effects of ROS scavenging in cellular antioxidant signaling is essentially lacking in sepsis. This review compiles the mechanisms of ROS scavenging as well as oxidative damage in sepsis, as well as antioxidants as a potent therapeutic. Direct interaction between ROS and cellular pathways greatly affects sepsis, but such interaction does not provide the explanation behind diverse biological outcomes. Animal models of sepsis and a number of clinical trials with septic patients exploring the efficiency of antioxidants in sepsis are reviewed. In line with this, both enzymatic and non-enzymatic antioxidants were effective, and results from recent studies are promising. The usage of these potent antioxidants in sepsis patients would greatly impact the field of medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA