Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(27): 14748-14755, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37379099

RESUMO

Photoisomerization of chromophores usually shows significantly less efficiency in solid polymers than in solution as strong intermolecular interactions lock their conformation. Herein, we establish the impact of macromolecular architecture on the isomerization efficiency of main-chain-incorporated chromophores (i.e., α-bisimine) in both solution and the solid state. We demonstrate that branched architectures deliver the highest isomerization efficiency for the main-chain chromophore in the solid state─remarkably as high as 70% compared to solution. The macromolecular design principles established herein for efficient solid-state photoisomerization can serve as a blueprint for enhancing the solid-state isomerization efficiency for other polymer systems, such as those based on azobenzenes.

2.
Chem Sci ; 15(10): 3687-3697, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38455007

RESUMO

Advanced functional polymeric materials based on spiropyrans (SPs) feature multi-stimuli responsive characteristics, such as a change in color with exposure to light (photochromism) or acids (halochromism). The inclusion of stimuli-responsive molecules in general - and SPs in particular - as main-chain repeating units is a scarcely explored macromolecular architecture compared to side chain responsive polymers. Herein, we establish the effects of substitution patterns on SPs within a homopolymer main-chain synthesized via head-to-tail Acyclic Diene METathesis (ADMET) polymerization. We unambiguously demonstrate that varying the location of the ester group (-OCOR) on the chromophore, which is essential to incorporate the SPs in the polymer backbone, determines the photo- and halochromism of the resulting polymers. While one polymer shows effective photochromism and resistance towards acids, the opposite - weak photochromism and effective response to acid - is observed for an isomeric polymer, simply by changing the position of the ester-linker relative to the benzopyran oxygen on the chromene unit. Our strategy represents a simple approach to manipulate the stimuli-response of main-chain SP bearing polymers and highlights the critical importance of isomeric molecular constitution on main-chain stimuli-sensitive polymers as emerging materials.

3.
ACS Macro Lett ; 13(6): 681-687, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38755739

RESUMO

Main-chain stimuli-responsive polymers synthesized via polymerization techniques that do not rely on metal-based catalysis are highly desirable for economic reasons and to avoid metal-polymer interactions. Herein, we introduce a metal-free head-to-tail organobase-catalyzed hydroxyl-yne click polymerization of an AB-type monomer to realize photoswitchable polymers featuring α-bismines as main-chain repeating units. The prepared main-chain α-bisimine-based polymers show excellent photoswitching in solution. We further post-functionalize the obtained polymers with various thiol compounds via thiol-Michael reactions to significantly lower the glass transition temperature (Tg), likely to be beneficial for the photoswitching process in the solid state. Thus, the herein introduced polymerization technique not only provides metal-free access to main-chain stimuli-responsive polymers, but also allows for the flexible post-modification of the obtained polymers to generate advanced macromolecular architectures with tunable properties.

4.
Mater Horiz ; 11(13): 3115-3126, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38595068

RESUMO

We report the photo-induced, additive-free, continuous synthesis of polymeric particles using flow chemistry. Not only can these particles be formed under ambient conditions in a solely light-induced precipitation polymerisation, they can be prepared via continuous flow techniques to up-scale the synthetic process. We carefully assess the flow chemical parameters and analyse the resulting particles quantitatively using scanning electron microscopy (SEM). Particle formation is a direct result of the step-growth polymerisation via a photochemically induced AA + BB Diels-Alder reaction, which we herein base on the dialdehyde monomer (AA) derived from the sustainable precursor, thymol. By employing a peroxyoxalate bismaleimide (BB), we introduce particles that can be selectively degraded on-demand, self-reported by light emission through chemiluminescence.

5.
Chem Sci ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39246378

RESUMO

We herein pioneer the visible light (λ max = 410 nm) mediated flow synthesis of catalytically active single-chain nanoparticles (SCNPs). Our design approach is based on a copolymer of poly(ethylene glycol) methyl ether methacrylate and a photocleavable 2-((((2-nitrobenzyl)oxy)carbonyl)amino)ethyl methacrylate monomer which can liberate amine groups upon visible light irradiation, allowing for single-chain collapse via the complexation of Cu(ii) ions. We initially demonstrate the successful applicability of our design approach for the batch photochemical synthesis of Cu(ii) SCNPs and transfer the concept to photoflow conditions, enabling, for the first time, the continuous production of functional SCNPs. Critically, we explore their ability to function as a photocatalyst for the cleavage of carbon-carbon single and double bonds on the examples of xanthene-9-carboxylic acid and oleic acid, demonstrating the advantageous effect SCNPs can provide over analogous small molecule catalysts.

6.
Adv Mater ; 35(14): e2211074, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36639825

RESUMO

It is demonstrated that the postfunctionalization of solid polymeric microspheres can generate fully and throughout functionalized materials, contrary to the expectation that core-shell structures are generated. The full functionalization is illustrated on the example of photochemically generated microspheres, which are subsequently transformed into polyradical systems. Given the all-organic nature of the functionalized microspheres, characterization methods with high analytical sensitivity and spatial resolution are pioneered by directly visualizing the inner chemical distribution of the postfunctionalized microspheres based on characteristic electron energy loss signals in transmission electron microscopy (TEM). Specifically, ultrasonic ultramicrotomy is combined successfully with electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) during TEM. These findings open a key avenue for analyzing all-organic low-contrast soft-matter material structures, while the specifically investigated system concomitantly holds promise as an all-radical solid-state functional material.

7.
Adv Mater ; 33(11): e2008259, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33554349

RESUMO

Reversible hydrogen uptake and the metal/dielectric transition make the Mg/MgH2 system a prime candidate for solid-state hydrogen storage and dynamic plasmonics. However, high dehydrogenation temperatures and slow dehydrogenation hamper broad applicability. One promising strategy to improve dehydrogenation is the formation of metastable γ-MgH2 . A nanoparticle (NP) design, where γ-MgH2 forms intrinsically during hydrogenation is presented and a formation mechanism based on transmission electron microscopy results is proposed. Volume expansion during hydrogenation causes compressive stress within the confined, anisotropic NPs, leading to plastic deformation of ß-MgH2 via (301)ß twinning. It is proposed that these twins nucleate γ-MgH2 nanolamellas, which are stabilized by residual compressive stress. Understanding this mechanism is a crucial step toward cycle-stable, Mg-based dynamic plasmonic and hydrogen-storage materials with improved dehydrogenation. It is envisioned that a more general design of confined NPs utilizes the inherent volume expansion to reform γ-MgH2 during each rehydrogenation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA