Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(23)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779285

RESUMO

Hexachlorocyclohexane (HCH) isomers constitute a group of persistent organic pollutants. Their mass production and treatment have led to a global environmental problem that continues to this day. The characterization of modes of degradation of HCH by isotope fractionation is a current challenge. Multi isotope fractionation analysis provides a concept to characterize the nature of enzymatic and chemical transformation reactions. The understanding of the kinetic isotope effects (KIE) on bond cleavage reaction contributes to analyses of the mechanism of chemical and enzymatic reactions. Herein, carbon, chlorine, and hydrogen kinetic isotope effects are measured and predicted for the dehydrochlorination reaction of γ-HCH promoted by the hydroxyl ion in aqueous solution. Quantum mechanical (QM) microsolvation with an implicit solvation model and path integral formalism in combination with free-energy perturbation and umbrella sampling (PI-FEP/UM) and quantum mechanical/molecular mechanical QM/MM potentials for including solvent effects as well as calculating isotope effects are used and analyzed with respect to their performance in reproducing measured values. Reaction characterization is discussed based on the magnitudes of obtained isotope effects. The comparative analysis between the chemical dehydrochlorination of γ-HCH in aqueous media and catalyzed reaction by dehydrochlorinase, LinA is presented and discussed. Based on the values of isotope effects, these two processes seem to occur via the same net mechanism.


Assuntos
Proteínas de Bactérias/metabolismo , Isótopos de Carbono/química , Hexaclorocicloexano/química , Liases/metabolismo , Fracionamento Químico , Cloro/química , Teoria da Densidade Funcional , Hidrogênio/química , Hidrólise , Estrutura Molecular , Teoria Quântica
2.
J Chem Theory Comput ; 16(2): 847-859, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31904954

RESUMO

Hydrogen abstraction from ethanol by atomic hydrogen in aqueous solution is studied using two theoretical approaches: the multipath variational transition state theory (MP-VTST) and a path-integral formalism in combination with free-energy perturbation and umbrella sampling (PI-FEP/UM). The performance of the models is compared to experimental values of H kinetic isotope effects (KIE). Solvation models used in this study ranged from purely implicit, via mixed-microsolvation treated quantum mechanically via the density functional theory (DFT) to fully explicit representation of the solvent, which was incorporated using a combined quantum mechanical-molecular mechanical (QM/MM) potential. The effects of the transition state conformation and the position of microsolvating water molecules interacting with the solute on the KIE are discussed. The KIEs are in good agreement with experiment when MP-VTST is used together with a model that includes microsolvation of the polar part of ethanol by five or six water molecules, emphasizing the importance of explicit solvation in KIE calculations. Both, MP-VTST and PI-FEP/UM enable detailed characterization of nuclear quantum effects accompanying the hydrogen atom transfer reaction in aqueous solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA