Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38385890

RESUMO

Epidemiologic studies suggest that prenatal exposures to certain viruses may influence early neurodevelopment, predisposing offspring to neuropsychiatric conditions later in life. The long-term effects of maternal COVID-19 infection in pregnancy on early brain development, however, remain largely unknown. We prospectively enrolled infants in an observational cohort study for a single-site study in the Washington, DC Metropolitan Area from June 2020 to November 2021 and compared these infants to pre-pandemic controls (studied March 2014-February 2020). The primary outcomes are measures of cortical morphometry (tissue-specific volumes), along with global and regional measures of local gyrification index, and sulcal depth. We studied 210 infants (55 infants of COVID-19 unexposed mothers, 47 infants of COVID-19-positive mothers, and 108 pre-pandemic healthy controls). We found increased cortical gray matter volume (182.45 ± 4.81 vs. 167.29 ± 2.92) and accelerated sulcal depth of the frontal lobe (5.01 ± 0.19 vs. 4.40 ± 0.13) in infants of COVID-19-positive mothers compared to controls. We found additional differences in infants of COVID-19 unexposed mothers, suggesting both maternal viral exposures, as well as non-viral stressors associated with the pandemic, may influence early development and warrant ongoing follow-up.


Assuntos
COVID-19 , Lactente , Recém-Nascido , Feminino , Gravidez , Humanos , SARS-CoV-2 , Encéfalo/diagnóstico por imagem , Substância Cinzenta , Mães
2.
Dev Neurosci ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320522

RESUMO

INTRODUCTION: The Central Autonomic Network (CAN) is a hierarchy of brain structures that collectively influence cardiac autonomic input, mediating the majority of brain-heart interactions, but has never been studied in premature neonates. In this study, we use heart rate variability (HRV), which has been described as the "primary output" of the CAN, and resting state functional MRI to characterize brain-heart relationships in premature neonates. METHODS: We studied premature neonates who underwent resting state functional MRI (rsfMRI) at term, (37-weeks postmenstrual age [PMA] or above) and had HRV data recorded during the same week of their MRI. HRV was derived from continuous electrocardiogram data during the week of the rsfMRI scan. For rsfMRI, a seed-based approach was used to define regions of interest (ROI) pertinent to the CAN, and blood oxygen level-dependent signal was correlated between each ROI as a measure of functional connectivity. HRV was correlated with CAN connectivity (CANconn) for each region, and sub-group analysis was performed based on sex and clinical comorbidities. RESULTS: Forty-seven premature neonates were included in this study, with a mean gestational age at birth of 28.1 +/- 2.6 weeks. Term CANconn was found to be significantly correlated with HRV in approximately one-fifth of CAN connections. Two distinct patterns emerged among these HRV-CANconn relationships. In the first, increased HRV was associated with stronger CANconn of limbic regions. In the second pattern, stronger CANconn at the precuneus was associated with impaired HRV maturation. These patterns were especially pronounced in male premature neonates. CONCLUSION: We report for the first time evidence of brain-heart relationships in premature neonates and an emerging CAN, most striking in male neonates, suggesting that the brain-heart axis may be more vulnerable in male premature neonates. Signatures in the heart rate may eventually become an important non-invasive tool to identify premature males at highest risk for neurodevelopmental impairment.

3.
Cereb Cortex ; 33(6): 2441-2454, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35641152

RESUMO

Sex-based differences in brain structure and function are observable throughout development and are thought to contribute to differences in behavior, cognition, and the presentation of neurodevelopmental disorders. Using multiple support vector machine (SVM) models as a data-driven approach to assess sex differences, we sought to identify regions exhibiting sex-dependent differences in functional connectivity and determine whether they were robust and sufficiently reliable to classify sex even prior to birth. To accomplish this, we used a sample of 110 human fetal resting state fMRI scans from 95 fetuses, performed between 19 and 40 gestational weeks. Functional brain connectivity patterns classified fetal sex with 73% accuracy. Across SVM models, we identified features (functional connections) that reliably differentiated fetal sex. Highly consistent predictors included connections in the somatomotor and frontal areas alongside the hippocampus, cerebellum, and basal ganglia. Moreover, high consistency features also implicated a greater magnitude of cross-region connections in females, while male weighted features were predominately within anatomically bounded regions. Our findings indicate that these differences, which have been observed later in childhood, are present and reliably detectable even before birth. These results show that sex differences arise before birth in a manner that is consistent and reliable enough to be highly identifiable.


Assuntos
Imageamento por Ressonância Magnética , Caracteres Sexuais , Humanos , Masculino , Feminino , Encéfalo , Mapeamento Encefálico/métodos , Cognição
4.
Cereb Cortex ; 33(12): 7386-7394, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36843135

RESUMO

Gamma-aminobutyric acid (GABA) and glutamatergic system perturbations following premature birth may explain neurodevelopmental deficits in the absence of structural brain injury. Using GABA-edited spectroscopy (MEscher-GArwood Point Resolved Spectroscopy [MEGA-PRESS] on 3 T MRI), we have described in-vivo brain GABA+ (+macromolecules) and Glx (glutamate + glutamine) concentrations in term-born infants. We report previously unavailable comparative data on in-vivo GABA+ and Glx concentrations in the cerebellum, the right basal ganglia, and the right frontal lobe of preterm-born infants without structural brain injury. Seventy-five preterm-born (gestational age 27.8 ± 2.9 weeks) and 48 term-born (39.6 ± 0.9 weeks) infants yielded reliable MEGA-PRESS spectra acquired at post-menstrual age (PMA) of 40.2 ± 2.3 and 43.0 ± 2 weeks, respectively. GABA+ (median 2.44 institutional units [i.u.]) concentrations were highest in the cerebellum and Glx higher in the cerebellum (5.73 i.u.) and basal ganglia (5.16 i.u.), with lowest concentrations in the frontal lobe. Metabolite concentrations correlated positively with advancing PMA and postnatal age at MRI (Spearman's rho 0.2-0.6). Basal ganglia Glx and NAA, and frontal GABA+ and NAA concentrations were lower in preterm compared with term infants. Moderate preterm infants had lower metabolite concentrations than term and extreme preterm infants. Our findings emphasize the impact of premature extra-uterine stimuli on GABA-glutamate system development and may serve as early biomarkers of neurodevelopmental deficits.


Assuntos
Lesões Encefálicas , Nascimento Prematuro , Lactente , Gravidez , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Ácido Glutâmico/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Ácido gama-Aminobutírico/metabolismo
5.
Pediatr Radiol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970708

RESUMO

BACKGROUND: Brain magnetic resonance imaging (MRI) is a crucial tool for clinical evaluation of the brain and neuroscience research. Obtaining successful non-sedated MRI in children who live in resource-limited settings may be an additional challenge. OBJECTIVE: To present a feasibility study of a novel, low-cost MRI training protocol used in a clinical research study in a rural/semi-rural region of Colombia and to examine neurodevelopmental factors associated with successful scans. MATERIALS AND METHODS: Fifty-seven typically developing Colombian children underwent a training protocol and non-sedated brain MRI at age 7. Group training utilized a customized booklet, an MRI toy set, and a simple mock scanner. Children attended MRI visits in small groups of two to three. Resting-state functional and structural images were acquired on a 1.5-Tesla scanner with a protocol duration of 30-40 minutes. MRI success was defined as the completion of all sequences and no more than mild motion artifact. Associations between the Wechsler Preschool and Primary Scale of Intelligence (WPPSI), Movement Assessment Battery for Children (MABC), Behavioral Rating Inventory of Executive Function (BRIEF), Child Behavior Checklist (CBCL), and Adaptive Behavior Assessment System (ABAS) scores and MRI success were analyzed. RESULTS: Mean (SD) age at first MRI attempt was 7.2 (0.2) years (median 7.2 years, interquartile range 7.1-7.3 years). Twenty-six (45.6%) participants were male. Fifty-one (89.5%) children were successful across two attempts; 44 (77.2%) were successful on their first attempt. Six (10.5%) were unsuccessful due to refusal or excessive motion. Age, sex, and scores across all neurodevelopmental assessments (MABC, TVIP, ABAS, BRIEF, CBCL, NIH Toolbox Flanker, NIH Toolbox Pattern Comparison, WPPSI) were not associated with likelihood of MRI success (P=0.18, 0.19, 0.38, 0.92, 0.84, 0.80, 1.00, 0.16, 0.75, 0.86, respectively). CONCLUSION: This cohort of children from a rural/semi-rural region of Colombia demonstrated comparable MRI success rates to other published cohorts after completing a low-cost MRI familiarization training protocol suitable for low-resource settings. Achieving non-sedated MRI success in children in low-resource and international settings is important for the continuing diversification of pediatric research studies.

6.
Hum Brain Mapp ; 44(5): 1934-1948, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36576333

RESUMO

Reliability and robustness of resting state functional connectivity MRI (rs-fcMRI) relies, in part, on minimizing the influence of head motion on measured brain signals. The confounding effects of head motion on functional connectivity have been extensively studied in adults, but its impact on newborn brain connectivity remains unexplored. Here, using a large newborn data set consisting of 159 rs-fcMRI scans acquired in the Developing Brain Institute at Children's National Hospital and 416 scans from The Developing Human Connectome Project (dHCP), we systematically investigated associations between head motion and rs-fcMRI. Head motion during the scan significantly affected connectivity at sensory-related networks and default mode networks, and at the whole brain scale; the direction of motion effects varied across the whole brain. Comparing high- versus low-head motion groups suggested that head motion can impact connectivity estimates across the whole brain. Censoring of high-motion volumes using frame-wise displacement significantly reduced the confounding effects of head motion on neonatal rs-fcMRI. Lastly, in the dHCP data set, we demonstrated similar persistent associations between head motion and network connectivity despite implementing a standard denoising strategy. Collectively, our results highlight the importance of using rigorous head motion correction in preprocessing neonatal rs-fcMRI to yield reliable estimates of brain activity.


Assuntos
Mapeamento Encefálico , Conectoma , Adulto , Criança , Recém-Nascido , Humanos , Mapeamento Encefálico/métodos , Reprodutibilidade dos Testes , Artefatos , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Movimento (Física) , Imageamento por Ressonância Magnética/métodos
7.
Pediatr Res ; 93(5): 1276-1284, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36335267

RESUMO

BACKGROUND: Fetal growth restriction (FGR) is a risk factor for neurodevelopmental problems, yet remains poorly understood. We sought to examine the relationship between intrauterine development and neonatal neurobehavior in pregnancies diagnosed with antenatal FGR. METHODS: We recruited women with singleton pregnancies diagnosed with FGR and measured placental and fetal brain volumes using MRI. NICU Network Neurobehavioral Scale (NNNS) assessments were performed at term equivalent age. Associations between intrauterine volumes and neurobehavioral outcomes were assessed using generalized estimating equation models. RESULTS: We enrolled 44 women diagnosed with FGR who underwent fetal MRI and 28 infants underwent NNNS assessments. Placental volumes were associated with increased self-regulation and decreased excitability; total brain, brainstem, cortical and subcortical gray matter (SCGM) volumes were positively associated with higher self-regulation; SCGM also was positively associated with higher quality of movement; increasing cerebellar volumes were positively associated with attention, decreased lethargy, non-optimal reflexes and need for special handling; brainstem volumes also were associated with decreased lethargy and non-optimal reflexes; cerebral and cortical white matter volumes were positively associated with hypotonicity. CONCLUSION: Disrupted intrauterine growth in pregnancies complicated by antenatally diagnosed FGR is associated with altered neonatal neurobehavior. Further work to determine long-term neurodevelopmental impacts is warranted. IMPACT: Fetal growth restriction is a risk factor for adverse neurodevelopment, but remains difficult to accurately identify. Intrauterine brain volumes are associated with infant neurobehavior. The antenatal diagnosis of fetal growth restriction is a risk factor for abnormal infant neurobehavior.


Assuntos
Retardo do Crescimento Fetal , Placenta , Recém-Nascido , Lactente , Humanos , Gravidez , Feminino , Placenta/diagnóstico por imagem , Placentação , Letargia , Encéfalo/diagnóstico por imagem
8.
Pediatr Res ; 93(6): 1772-1779, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36042329

RESUMO

BACKGROUND: While the health, social, and economic impacts of opioid addiction on adults and their communities are well known, the impact of maternal opioid use on the fetus exposed in utero is less well understood. METHODS: This paper presents the protocol of the ACT NOW Outcomes of Babies with Opioid Exposure (OBOE) Study, a multi-site prospective longitudinal cohort study of infants with antenatal opioid exposure and unexposed controls. Study objectives are to determine the impact of antenatal opioid exposure on brain development and neurodevelopmental outcomes over the first 2 years of life and explore whether family, home, and community factors modify developmental trajectories during this critical time period. RESULTS: Primary outcomes related to brain development include cortical volumes, deep cerebral gray matter volumes, resting-state functional connectivity measures, and structural connectivity measures using diffusion tensor imaging. Primary neurodevelopmental outcomes include visual abnormalities, cognitive, language, and motor skills measured using the Bayley Scales of Infant Development and social-emotional and behavioral problems and competence measured by the Brief Infant-Toddler Social and Emotional Assessment. CONCLUSIONS: The OBOE study has been designed to overcome challenges of previous studies and will help further understanding of the effects of antenatal opioid exposure on early infant development. IMPACT: This study will integrate MRI findings and comprehensive neurodevelopmental assessments to provide early insights into the functional topography of the brain in this high-risk population and assess MRI as a potential biomarker. Rather than conducting neuroimaging at a single time point, the study will include serial MRI assessments from birth to 2 years, allowing for the examination of trajectories throughout this period of rapid brain development. While previous studies often have had limited information on exposures, this study will use umbilical cord assays to accurately measure amounts of opioids and other substances from 20 weeks of gestation to birth.


Assuntos
Analgésicos Opioides , Imagem de Tensor de Difusão , Lactente , Adulto , Humanos , Feminino , Gravidez , Analgésicos Opioides/efeitos adversos , Estudos Prospectivos , Estudos Longitudinais , Encéfalo/diagnóstico por imagem
9.
Cereb Cortex ; 32(13): 2858-2867, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34882775

RESUMO

The subplate is a transient brain structure which plays a key role in the maturation of the cerebral cortex. Altered brain growth and cortical development have been suggested in fetuses with complex congenital heart disease (CHD) in the third trimester. However, at an earlier gestation, the putative role of the subplate in altered brain development in CHD fetuses is poorly understood. This study aims to examine subplate growth (i.e., volume and thickness) and its relationship to cortical sulcal development in CHD fetuses compared with healthy fetuses by using 3D reconstructed fetal magnetic resonance imaging. We studied 260 fetuses, including 100 CHD fetuses (22.3-32 gestational weeks) and 160 healthy fetuses (19.6-31.9 gestational weeks). Compared with healthy fetuses, CHD fetuses had 1) decreased global and regional subplate volumes and 2) decreased subplate thickness in the right hemisphere overall, in frontal and temporal lobes, and insula. Compared with fetuses with two-ventricle CHD, those with single-ventricle CHD had reduced subplate volume and thickness in right occipital and temporal lobes. Finally, impaired subplate growth was associated with disturbances in cortical sulcal development in CHD fetuses. These findings suggested a potential mechanistic pathway and early biomarker for the third-trimester failure of brain development in fetuses with complex CHD. SIGNIFICANCE STATEMENT: Our findings provide an early biomarker for brain maturational failure in fetuses with congenital heart disease, which may guide the development of future prenatal interventions aimed at reducing neurological compromise of prenatal origin in this high-risk population.


Assuntos
Cardiopatias Congênitas , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Feminino , Feto/diagnóstico por imagem , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Gravidez , Segundo Trimestre da Gravidez
10.
Hum Brain Mapp ; 43(6): 1895-1916, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35023255

RESUMO

Post-hemorrhagic hydrocephalus (PHH) is a severe complication of intraventricular hemorrhage (IVH) in very preterm infants. PHH monitoring and treatment decisions rely heavily on manual and subjective two-dimensional measurements of the ventricles. Automatic and reliable three-dimensional (3D) measurements of the ventricles may provide a more accurate assessment of PHH, and lead to improved monitoring and treatment decisions. To accurately and efficiently obtain these 3D measurements, automatic segmentation of the ventricles can be explored. However, this segmentation is challenging due to the large ventricular anatomical shape variability in preterm infants diagnosed with PHH. This study aims to (a) propose a Bayesian U-Net method using 3D spatial concrete dropout for automatic brain segmentation (with uncertainty assessment) of preterm infants with PHH; and (b) compare the Bayesian method to three reference methods: DenseNet, U-Net, and ensemble learning using DenseNets and U-Nets. A total of 41 T2 -weighted MRIs from 27 preterm infants were manually segmented into lateral ventricles, external CSF, white and cortical gray matter, brainstem, and cerebellum. These segmentations were used as ground truth for model evaluation. All methods were trained and evaluated using 4-fold cross-validation and segmentation endpoints, with additional uncertainty endpoints for the Bayesian method. In the lateral ventricles, segmentation endpoint values for the DenseNet, U-Net, ensemble learning, and Bayesian U-Net methods were mean Dice score = 0.814 ± 0.213, 0.944 ± 0.041, 0.942 ± 0.042, and 0.948 ± 0.034 respectively. Uncertainty endpoint values for the Bayesian U-Net were mean recall = 0.953 ± 0.037, mean  negative predictive value = 0.998 ± 0.005, mean accuracy = 0.906 ± 0.032, and mean AUC = 0.949 ± 0.031. To conclude, the Bayesian U-Net showed the best segmentation results across all methods and provided accurate uncertainty maps. This method may be used in clinical practice for automatic brain segmentation of preterm infants with PHH, and lead to better PHH monitoring and more informed treatment decisions.


Assuntos
Hidrocefalia , Recém-Nascido Prematuro , Teorema de Bayes , Hemorragia Cerebral/complicações , Hemorragia Cerebral/diagnóstico por imagem , Ventrículos Cerebrais/diagnóstico por imagem , Humanos , Hidrocefalia/complicações , Hidrocefalia/etiologia , Lactente , Recém-Nascido
11.
Cereb Cortex ; 31(6): 3034-3046, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33558873

RESUMO

Recent advances in brain imaging have enabled non-invasive in vivo assessment of the fetal brain. Characterizing brain development in healthy fetuses provides baseline measures for identifying deviations in brain function in high-risk clinical groups. We examined 110 resting state MRI data sets from fetuses at 19 to 40 weeks' gestation. Using graph-theoretic techniques, we characterized global organizational features of the fetal functional connectome and their prenatal trajectories. Topological features related to network integration (i.e., global efficiency) and segregation (i.e., clustering) were assessed. Fetal networks exhibited small-world topology, showing high clustering and short average path length relative to reference networks. Likewise, fetal networks' quantitative small world indices met criteria for small-worldness (σ > 1, ω = [-0.5 0.5]). Along with this, fetal networks demonstrated global and local efficiency, economy, and modularity. A right-tailed degree distribution, suggesting the presence of central areas that are more highly connected to other regions, was also observed. Metrics, however, were not static during gestation; measures associated with segregation-local efficiency and modularity-decreased with advancing gestational age. Altogether, these suggest that the neural circuitry underpinning the brain's ability to segregate and integrate information exists as early as the late 2nd trimester of pregnancy and reorganizes during the prenatal period. Significance statement. Mounting evidence for the fetal origins of some neurodevelopmental disorders underscores the importance of identifying features of healthy fetal brain functional development. Alterations in prenatal brain connectomics may serve as early markers for identifying fetal-onset neurodevelopmental disorders, which in turn provide improved surveillance of at-risk fetuses and support the initiation of early interventions.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma/métodos , Feto/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Encéfalo/fisiologia , Feminino , Desenvolvimento Fetal/fisiologia , Feto/fisiologia , Humanos , Estudos Longitudinais , Rede Nervosa/fisiologia , Gravidez , Estudos Prospectivos
12.
Radiology ; 299(3): 691-702, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33787337

RESUMO

Background The third trimester of gestation is a crucial phase of rapid brain development, but little has been reported on the trajectories of cerebral blood flow (CBF) in preterm infants in this period. Purpose To quantify regional CBF in very preterm infants longitudinally across the ex utero third trimester and to determine its relationship with clinical factors associated with brain injury and premature birth. Materials and Methods In this prospective study, very preterm infants were enrolled for three longitudinal MRI scans, and 22 healthy full-term infants were enrolled for one term MRI scan between November 2016 and February 2019. Global and regional CBF in the cortical gray matter, white matter, deep gray matter, and cerebellum were measured using arterial spin labeling with postlabeling delay of 2025 msec at 1.5 T and 3.0 T. Brain injury and clinical risk factors in preterm infants were investigated to determine associations with CBF. Generalized estimating equations were used to account for correlations between repeated measures in the same individual. Results A total of 75 preterm infants (mean postmenstrual age [PMA]: 29.5 weeks ± 2.3 [standard deviation], 34.9 weeks ± 0.8, and 39.3 weeks ± 2.0 for each scan; 43 male infants) and 22 full-term infants (mean PMA, 42.1 weeks ± 2.0; 13 male infants) were evaluated. In preterm infants, global CBF was 11.9 mL/100 g/min ± 0.2 (standard error). All regional CBF increased significantly with advancing PMA (P ≤ .02); the cerebellum demonstrated the most rapid CBF increase and the highest mean CBF. Lower CBF was associated with intraventricular hemorrhage in all regions (P ≤ .05) and with medically managed patent ductus arteriosus in the white matter and deep gray matter (P = .03). Mean CBF of preterm infants at term-equivalent age was significantly higher compared with full-term infants (P ≤ .02). Conclusion Regional cerebral blood flow increased significantly in preterm infants developing in an extrauterine environment across the third trimester and was associated with intraventricular hemorrhage and patent ductus arteriosus. © RSNA, 2021 Online supplemental material is available for this article.


Assuntos
Hemorragia Cerebral/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Permeabilidade do Canal Arterial/diagnóstico por imagem , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética/métodos , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Masculino , Gravidez , Terceiro Trimestre da Gravidez , Estudos Prospectivos , Marcadores de Spin
13.
Magn Reson Med ; 85(3): 1272-1281, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32936489

RESUMO

PURPOSE: Quantitative susceptibility mapping (QSM) is an emerging tool for the precise characterization of human tissue, including regional oxygenation. A critical function of the human placenta is oxygen transfer to the developing fetus, which remains difficult to study in utero. The purpose of this study is to investigate the feasibility of performing QSM in the human placenta in utero. METHODS: In healthy pregnant women, 3D gradient echo data of the placenta were acquired with prospective respiratory gating at 1.5 Tesla and 3 Tesla. A brief period (6-7 min) of maternal hyperoxia was induced to increase placental oxygenation in a subset of women scanned at 3 Tesla, and data were acquired before and during oxygen administration. Susceptibility and T2∗ / R2∗ maps were reconstructed from gradient echo data, and mean and SD of these measures within the whole placenta were calculated. RESULTS: A total of 54 women were studied at a mean gestational age of 30.7 ± 4.2 (range: 24 5/7-38 4/7) weeks. Susceptibility and T2∗ maps demonstrated lobular contrast reflecting regional oxygenation difference at both field strengths. SD of susceptibilities, mean R2∗ , and SD of R2∗ of the placenta showed a linear relationship with gestational age (P < .01 for all). These measures were also responsive to maternal hyperoxia, and there was an increasing response with advancing gestational age (P < .01 for all). CONCLUSION: This study demonstrates the feasibility of performing placental QSM in pregnant women and supports the potential for placental QSM to provide noninvasive in vivo assessment of placental oxygenation.


Assuntos
Hiperóxia , Imageamento por Ressonância Magnética , Estudos de Viabilidade , Feminino , Humanos , Hiperóxia/diagnóstico por imagem , Lactente , Placenta/diagnóstico por imagem , Gravidez , Estudos Prospectivos
14.
J Magn Reson Imaging ; 54(3): 818-829, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33891778

RESUMO

BACKGROUND: Due to random motion of fetuses and maternal respirations, image quality of fetal brain MRIs varies considerably. To address this issue, visual inspection of the images is performed during acquisition phase and after 3D-reconstruction, and the images are re-acquired if they are deemed to be of insufficient quality. However, this process is time-consuming and subjective. Multi-instance (MI) deep learning methods (DLMs) may perform this task automatically. PURPOSE: To propose an MI count-based DLM (MI-CB-DLM), an MI vote-based DLM (MI-VB-DLM), and an MI feature-embedding DLM (MI-FE-DLM) for automatic assessment of 3D fetal-brain MR image quality. To quantify influence of fetal gestational age (GA) on DLM performance. STUDY TYPE: Retrospective. SUBJECTS: Two hundred and seventy-one MR exams from 211 fetuses (mean GA ± SD = 30.9 ± 5.5 weeks). FIELD STRENGTH/SEQUENCE: T2 -weighted single-shot fast spin-echo acquired at 1.5 T. ASSESSMENT: The T2 -weighted images were reconstructed in 3D. Then, two fetal neuroradiologists, a clinical neuroscientist, and a fetal MRI technician independently labeled the reconstructed images as 1 or 0 based on image quality (1 = high; 0 = low). These labels were fused and served as ground truth. The proposed DLMs were trained and evaluated using three repeated 10-fold cross-validations (training and validation sets of 244 and 27 scans). To quantify GA influence, this variable was included as an input of the DLMs. STATISTICAL TESTS: DLM performance was evaluated using precision, recall, F-score, accuracy, and AUC values. RESULTS: Precision, recall, F-score, accuracy, and AUC averaged over the three cross validations were 0.85 ± 0.01, 0.85 ± 0.01, 0.85 ± 0.01, 0.85 ± 0.01, 0.93 ± 0.01, for MI-CB-DLM (without GA); 0.75 ± 0.03, 0.75 ± 0.03, 0.75 ± 0.03, 0.75 ± 0.03, 0.81 ± 0.03, for MI-VB-DLM (without GA); 0.81 ± 0.01, 0.81 ± 0.01, 0.81 ± 0.01, 0.81 ± 0.01, 0.89 ± 0.01, for MI-FE-DLM (without GA); and 0.86 ± 0.01, 0.86 ± 0.01, 0.86 ± 0.01, 0.86 ± 0.01, 0.93 ± 0.01, for MI-CB-DLM with GA. DATA CONCLUSION: MI-CB-DLM performed better than other DLMs. Including GA as an input of MI-CB-DLM improved its performance. MI-CB-DLM may potentially be used to objectively and rapidly assess fetal MR image quality. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 3.


Assuntos
Aprendizado Profundo , Encéfalo/diagnóstico por imagem , Feto/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Estudos Retrospectivos
15.
Neuroimage ; 213: 116702, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32147366

RESUMO

BACKGROUND: Premature birth is associated with high prevalence of neurodevelopmental impairments in surviving infants. The putative role of cerebellar and brainstem dysfunction remains poorly understood, particularly in the absence of overt structural injury. METHOD: We compared in-utero versus ex-utero global, regional and local cerebellar and brainstem development in healthy fetuses (n â€‹= â€‹38) and prematurely born infants without evidence of structural brain injury on conventional MRI studies (n â€‹= â€‹74) that were performed at two time points: the first corresponding to the third trimester, either in utero or ex utero in the early postnatal period following preterm birth (30-40 weeks of gestation; 38 control fetuses; 52 premature infants) and the second at term equivalent age (37-46 weeks; 38 control infants; 58 premature infants). We compared 1) volumetric growth of 7 regions in the cerebellum (left and right hemispheres, left and right dentate nuclei, and the anterior, neo, and posterior vermis); 2) volumetric growth of 3 brainstem regions (midbrain, pons, and medulla); and 3) shape development in the cerebellum and brainstem using spherical harmonic description between the two groups. RESULTS: Both premature and control groups showed regional cerebellar differences in growth rates, with the left and right cerebellar hemispheres showing faster growth compared to the vermis. In the brainstem, the pons grew faster than the midbrain and medulla in both prematurely born infants and controls. Using shape analyses, premature infants had smaller left and right cerebellar hemispheres but larger regional vermis and paravermis compared to in-utero control fetuses. For the brainstem, premature infants showed impaired growth of the superior surface of the midbrain, anterior surface of the pons, and inferior aspects of the medulla compared to the control fetuses. At term-equivalent age, premature infants had smaller cerebellar hemispheres bilaterally, extending to the superior aspect of the left cerebellar hemisphere, and larger anterior vermis and posteroinferior cerebellar lobes than healthy newborns. For the brainstem, large differences between premature infants and healthy newborns were found in the anterior surface of the pons. CONCLUSION: This study analyzed both volumetric growth and shape development of the cerebellum and brainstem in premature infants compared to healthy fetuses using longitudinal MRI measurements. The findings in the present study suggested that preterm birth may alter global, regional and local development of the cerebellum and brainstem even in the absence of structural brain injury evident on conventional MRI.


Assuntos
Tronco Encefálico/crescimento & desenvolvimento , Cerebelo/crescimento & desenvolvimento , Recém-Nascido Prematuro/crescimento & desenvolvimento , Feminino , Feto , Idade Gestacional , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Masculino , Gravidez
16.
Neuroimage ; 219: 117043, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32534962

RESUMO

Brain structural changes in premature infants appear before term age. Functional differences between premature infants and healthy fetuses during this period have yet to be explored. Here, we examined brain connectivity using resting state functional MRI in 25 very premature infants (VPT; gestational age at birth <32 weeks) and 25 healthy fetuses with structurally normal brain MRIs. Resting state data were evaluated using seed-based correlation analysis and network-based statistics using 23 regions of interest (ROIs) per hemisphere. Functional connectivity strength, the Pearson correlation between blood oxygenation level dependent signals over time across all ROIs, was compared between groups. In both cohorts, connectivity between homotopic ROIs showed a decreasing medial to lateral gradient. The cingulate cortex, medial temporal lobe and the basal ganglia shared the strongest connections. In premature infants, connections involving superior temporal, hippocampal, and occipital areas, among others, were stronger compared to fetuses. Premature infants showed stronger connectivity in sensory input and stress-related areas suggesting that extra-uterine environment exposure alters the development of select neural networks in the absence of structural brain injury.


Assuntos
Encéfalo/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Feto/diagnóstico por imagem , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino
17.
Neuroimage ; 219: 117016, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32526384

RESUMO

Proton magnetic resonance spectroscopy (1H-MRS) of the fetal brain can be used to study emerging metabolite profiles in the developing brain. Identifying early deviations in brain metabolic profiles in high-risk fetuses may offer important adjunct clinical information to improve surveillance and management during pregnancy. OBJECTIVE: To investigate the normative trajectory of the fetal brain metabolites during the second half of gestation, and to determine the impact of using different Cramer-Rao Lower Bounds (CRLB) threshold on metabolite measurements using magnetic resonance spectroscopy. STUDY DESIGN: We prospectively enrolled 219 pregnant women with normal fetal ultrasound and biometric measures. We performed a total of 331 fetal 1H-MRS studies with gestational age in the rage of 18-39 weeks with 112 of the enrolled participants scanned twice. All the spectra in this study were acquired on a GE 1.5 T scanner using long echo-time of 144 â€‹ms and analyzed in LCModel. RESULTS: We successfully acquired and analyzed fetal 1H-MRS with a success rate of 93%. We observed increases in total NAA, total creatine, total choline, scyllo inositol and total NAA-to-total choline ratio with advancing GA. Our results also showed faster increases in total NAA and total NAA-to-total choline ratio during the third trimester compared to the second trimester. We also observed faster increases in total choline and total NAA in female fetuses. Increasing the Cramer-Rao lower bounds threshold progressively from 100% to 40%-20% increased the mean metabolite concentrations and decreased the number of observations available for analysis. CONCLUSION: We report serial fetal brain biochemical profiles in a large cohort of health fetuses studied twice in gestation with a high success rate in the second and third trimester of pregnancy. We present normative in-vivo fetal brain metabolite trajectories over a 21-week gestational period which can be used to non-invasively measure and monitor brain biochemistry in the healthy and high-risk fetus.


Assuntos
Encéfalo/metabolismo , Desenvolvimento Fetal/fisiologia , Segundo Trimestre da Gravidez/metabolismo , Terceiro Trimestre da Gravidez/metabolismo , Adulto , Ácido Aspártico/metabolismo , Colina/metabolismo , Creatina/metabolismo , Feminino , Idade Gestacional , Humanos , Imageamento por Ressonância Magnética , Gravidez , Estudos Prospectivos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Valores de Referência
18.
Radiology ; 294(1): 141-148, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31687920

RESUMO

Background Impaired brain development in fetuses with congenital heart disease (CHD) may result from inadequate cerebral oxygen supply in utero. Purpose To test whether fetal cerebral oxygenation can be increased by maternal oxygen administration, effects of maternal hyperoxia on blood oxygenation of the placenta and fetal brain were examined by using blood oxygenation level-dependent (BOLD) functional MRI. Materials and Methods In this prospective study, BOLD MRI was performed in 86 fetuses (56 healthy fetuses and 30 fetuses diagnosed with CHD) between 22 and 39 weeks gestational age (GA) from May 2015 to December 2017, with the following study design: phase I, 2-minute resting state at baseline (room air); phase II, 6-minute maternal hyperoxia with 100% oxygen; and phase III, 5.6-minute return to resting state. After motion correction, the signals were averaged over the placenta and fetal brain and converted to the change in R2* (ΔR2*). Fetuses with CHD were categorized into those with a single ventricle (SV) or two ventricles (TVs) and those with aortic obstruction (AO) or non-AO. Data were analyzed by using generalized linear mixed models controlling for GA and sex. Results Placental ΔR2* increased during maternal hyperoxia in healthy fetuses and fetuses with CHD, but it was higher in SV CHD (mean ΔR2*, 1.3 sec-1 ± 0.1 [standard error; P < .01], 1.9 sec-1 ± 0.2 [P < .01], and 1.0 sec-1 ± 0.3 [P < .01], respectively, for control fetuses, fetuses with SV CHD, and fetuses with TV CHD). Placental ΔR2* during maternal hyperoxia changed with GA in healthy control fetuses and fetuses with SV or AO CHD (ΔR2* per week, 0.1 sec-1 ± 0 [P < .01], 0.2 sec-1 ± 0 [P = .01], and 0.2 sec-1 ± 0 [P = .01], respectively), but not in fetuses with CHD and TV or non-AO. Fetal brain ΔR2* was constant across all phases in healthy control fetuses and fetuses with TV CHD but increased during maternal hyperoxia in fetuses with SV or AO CHD (mean ΔR2*, 0.7 sec-1 ± 0.2 [P = .01] and 0.5 sec-1 ± 0.2 [P = .02], respectively). Conclusion Six minutes of maternal hyperoxia increased placental oxygenation in healthy fetuses and fetuses with congenital heart disease, and it selectively increased cerebral blood oxygenation in fetuses with single ventricle or aortic obstruction. © RSNA, 2019 Online supplemental material is available for this article.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/embriologia , Cardiopatias Congênitas/complicações , Hemodinâmica/fisiologia , Imageamento por Ressonância Magnética/métodos , Oxigenoterapia/métodos , Placenta/diagnóstico por imagem , Adulto , Feminino , Cardiopatias Congênitas/embriologia , Humanos , Hiperóxia , Masculino , Mães , Oxigênio/administração & dosagem , Placenta/fisiologia , Gravidez , Estudos Prospectivos
19.
Acta Paediatr ; 109(8): 1580-1587, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31922288

RESUMO

AIM: Breast milk feeding is linked to improved neurodevelopmental outcomes in very low birth weight (VLBW) infants, though the mechanisms are not well understood. This study utilised quantitative magnetic resonance imaging (qMRI) techniques to compare brain growth and white matter development in preterm infants receiving primarily breast milk versus formula feeds. METHODS: We prospectively enrolled infants born at very low birth weight (<1500 g) and <32 weeks gestational age and performed MRI at term-equivalent age. We utilised volumetric segmentation to calculate regional and total brain volumes and diffusion tensor imaging to evaluate white matter microstructural organisation. Daily nutritional data were extracted from the medical record. RESULTS: Nutritional and MRI data were obtained for 68 infants admitted within the first week of life (44 breast milk and 24 formula). Breast milk-fed infants demonstrated significantly larger total brain volumes (P = .04) as well as volumes in the amygdala-hippocampus and cerebellum (P < .01) compared with formula-fed. Infants receiving breast milk also demonstrated greater white matter microstructural organisation in the corpus callosum, posterior limb of internal capsule and cerebellum (P < .01 to .03). CONCLUSION: VLBW infants receiving primarily breast milk versus preterm formula in this small exploratory study demonstrated significantly greater regional brain volumes and white matter microstructural organisation by term-equivalent age.


Assuntos
Encéfalo , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , Leite Humano , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Imagem de Tensor de Difusão , Feminino , Humanos , Lactente , Recém-Nascido , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA