Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 148(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34143204

RESUMO

During retinal development, a large subset of progenitors upregulates the transcription factor Otx2, which is required for photoreceptor and bipolar cell formation. How these retinal progenitor cells initially activate Otx2 expression is unclear. To address this, we investigated the cis-regulatory network that controls Otx2 expression in mice. We identified a minimal enhancer element, DHS-4D, that drove expression in newly formed OTX2+ cells. CRISPR/Cas9-mediated deletion of DHS-4D reduced OTX2 expression, but this effect was diminished in postnatal development. Systematic mutagenesis of the enhancer revealed that three basic helix-loop-helix (bHLH) transcription factor-binding sites were required for its activity. Single cell RNA-sequencing of nascent Otx2+ cells identified the bHLH factors Ascl1 and Neurog2 as candidate regulators. CRISPR/Cas9 targeting of these factors showed that only the simultaneous loss of Ascl1 and Neurog2 prevented OTX2 expression. Our findings suggest that Ascl1 and Neurog2 act either redundantly or in a compensatory fashion to activate the DHS-4D enhancer and Otx2 expression. We observed redundancy or compensation at both the transcriptional and enhancer utilization levels, suggesting that the mechanisms governing Otx2 regulation in the retina are flexible and robust.


Assuntos
Sistema y+ de Transporte de Aminoácidos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Organogênese/genética , Fatores de Transcrição Otx/genética , Retina/metabolismo , Animais , Sequência de Bases , Elementos E-Box , Imunofluorescência , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Motivos de Nucleotídeos , Fatores de Transcrição Otx/metabolismo , Retina/embriologia
2.
Brain Behav Immun ; 116: 303-316, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38151165

RESUMO

Binge drinking is rising among aged adults (>65 years of age), however the contribution of alcohol misuse to neurodegenerative disease development is not well understood. Both advanced age and repeated binge ethanol exposure increase neuroinflammation, which is an important component of neurodegeneration and cognitive dysfunction. Surprisingly, the distinct effects of binge ethanol exposure on neuroinflammation and associated degeneration in the aged brain have not been well characterized. Here, we establish a model of intermittent binge ethanol exposure in young and aged female mice to investigate the effects of advanced age and binge ethanol on these outcomes. Following intermittent binge ethanol exposure, expression of pro-inflammatory mediators (tnf-α, il-1ß, ccl2) was distinctly increased in isolated hippocampal tissue by the combination of advanced age and ethanol. Binge ethanol exposure also increased measures of senescence, the nod like receptor pyrin domain containing 3 (NLRP3) inflammasome, and microglia reactivity in the brains of aged mice compared to young. Binge ethanol exposure also promoted neuropathology in the hippocampus of aged mice, including tau hyperphosphorylation and neuronal death. We further identified advanced age-related deficits in contextual memory that were further negatively impacted by ethanol exposure. These data suggest binge drinking superimposed with advanced age promotes early markers of neurodegenerative disease development and cognitive decline, which may be driven by heightened neuroinflammatory responses to ethanol. Taken together, we propose this novel exposure model of intermittent binge ethanol can be used to identify therapeutic targets to prevent advanced age- and ethanol-related neurodegeneration.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Disfunção Cognitiva , Doenças Neurodegenerativas , Camundongos , Animais , Feminino , Etanol , Doenças Neurodegenerativas/metabolismo , Doenças Neuroinflamatórias
3.
Dev Biol ; 488: 131-150, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644251

RESUMO

How cone photoreceptors are formed during retinal development is only partially known. This is in part because we do not fully understand the gene regulatory network responsible for cone genesis. We reasoned that cis-regulatory elements (enhancers) active in nascent cones would be regulated by the same upstream network that controls cone formation. To dissect this network, we searched for enhancers active in developing cones. By electroporating enhancer-driven fluorescent reporter plasmids, we observed that a sequence within an intron of the cone-specific Pde6c gene acted as an enhancer in developing mouse cones. Similar fluorescent reporter plasmids were used to generate stable transgenic human induced pluripotent stem cells that were then grown into three-dimensional human retinal organoids. These organoids contained fluorescently labeled cones, demonstrating that the Pde6c enhancer was also active in human cones. We observed that enhancer activity was transient and labeled a minor population of developing rod photoreceptors in both mouse and human systems. This cone-enriched pattern argues that the Pde6c enhancer is activated in cells poised between rod and cone fates. Additionally, it suggests that the Pde6c enhancer is activated by the same regulatory network that selects or stabilizes cone fate choice. To further understand this regulatory network, we identified essential enhancer sequence regions through a series of mutagenesis experiments. This suggested that the Pde6c enhancer was regulated by transcription factor binding at five or more locations. Binding site predictions implicated transcription factor families known to control photoreceptor formation and families not previously associated with cone development. These results provide a framework for deciphering the gene regulatory network that controls cone genesis in both human and mouse systems. Our new transgenic human stem cell lines provide a tool for determining which cone developmental mechanisms are shared and distinct between mice and humans.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células Fotorreceptoras Retinianas Cones , Animais , Humanos , Camundongos , Animais Geneticamente Modificados , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Proteínas do Olho/genética , Íntrons/genética , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Fatores de Transcrição/metabolismo
4.
Dev Biol ; 453(2): 155-167, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31163126

RESUMO

Uncovering the gene regulatory networks that control cone photoreceptor formation has been hindered because cones only make up a few percent of the retina and form asynchronously during development. To overcome these limitations, we used a γ-secretase inhibitor, DAPT, to disrupt Notch signaling and force proliferating retinal progenitor cells to rapidly adopt neuronal identity. We treated mouse retinal explants at the peak of cone genesis with DAPT and examined tissues at several time-points by histology and bulk RNA-sequencing. We found that this treatment caused supernumerary cone formation in an overwhelmingly synchronized fashion. This analysis revealed several categorical patterns of gene expression changes over time relative to DMSO treated control explants. These were placed in the temporal context of the activation of Otx2, a transcription factor that is expressed at the onset of photoreceptor development and that is required for both rod and cone formation. One group of interest had genes, such as Mybl1, Ascl1, Neurog2, and Olig2, that became upregulated by DAPT treatment before Otx2. Two other groups showed upregulated gene expression shortly after Otx2, either transiently or permanently. This included genes such as Mybl1, Meis2, and Podxl. Our data provide a developmental timeline of the gene expression events that underlie the initial steps of cone genesis and maturation. Applying this strategy to human retinal organoid cultures was also sufficient to induce a massive increase in cone genesis. Taken together, our results provide a temporal framework that can be used to elucidate the gene regulatory logic controlling cone photoreceptor development.


Assuntos
Diferenciação Celular/genética , Perfilação da Expressão Gênica , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Camundongos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
5.
Stem Cells ; 37(2): 284-294, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30372555

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated system (Cas9)-mediated gene editing of human hematopoietic stem cells (hHSCs) is a promising strategy for the treatment of genetic blood diseases through site-specific correction of identified causal mutations. However, clinical translation is hindered by low ratio of precise gene modification using the corrective donor template (homology-directed repair, HDR) to gene disruption (nonhomologous end joining, NHEJ) in hHSCs. By using a modified version of Cas9 with reduced nuclease activity in G1 phase of cell cycle when HDR cannot occur, and transiently increasing the proportion of cells in HDR-preferred phases (S/G2), we achieved a four-fold improvement in HDR/NHEJ ratio over the control condition in vitro, and a significant improvement after xenotransplantation of edited hHSCs into immunodeficient mice. This strategy for improving gene editing outcomes in hHSCs has important implications for the field of gene therapy, and can be applied to diseases where increased HDR/NHEJ ratio is critical for therapeutic success. Stem Cells 2019;37:284-294.


Assuntos
Reparo do DNA/genética , Edição de Genes/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco/metabolismo , Condicionamento Pré-Transplante/métodos , Animais , Humanos , Camundongos
7.
Mol Ther ; 26(2): 468-479, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29221806

RESUMO

The use of engineered nucleases combined with a homologous DNA donor template can result in targeted gene correction of the sickle cell disease mutation in hematopoietic stem and progenitor cells. However, because of the high homology between the adjacent human ß- and δ-globin genes, off-target cleavage is observed at δ-globin when using some endonucleases targeted to the sickle mutation in ß-globin. Introduction of multiple double-stranded breaks by endonucleases has the potential to induce intergenic alterations. Using a novel droplet digital PCR assay and high-throughput sequencing, we characterized the frequency of rearrangements between the ß- and δ-globin paralogs when delivering these nucleases. Pooled CD34+ cells and colony-forming units from sickle bone marrow were treated with nuclease only or including a donor template and then analyzed for potential gene rearrangements. It was observed that, in pooled CD34+ cells and colony-forming units, the intergenic ß-δ-globin deletion was the most frequent rearrangement, followed by inversion of the intergenic fragment, with the inter-chromosomal translocation as the least frequent. No rearrangements were observed when endonuclease activity was restricted to on-target ß-globin cleavage. These findings demonstrate the need to develop site-specific endonucleases with high specificity to avoid unwanted gene alterations.


Assuntos
Edição de Genes , Variação Genética , Células-Tronco Hematopoéticas/metabolismo , Globinas beta/genética , Conversão Gênica , Rearranjo Gênico , Marcação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Técnicas de Amplificação de Ácido Nucleico , Translocação Genética
8.
Blood ; 125(17): 2597-604, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25733580

RESUMO

Sickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the ß-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to flank the sickle mutation, we demonstrate efficient targeted cleavage at the ß-globin locus with minimal off-target modification. By co-delivering a homologous donor template (either an integrase-defective lentiviral vector or a DNA oligonucleotide), high levels of gene modification were achieved in CD34(+) hematopoietic stem and progenitor cells. Modified cells maintained their ability to engraft NOD/SCID/IL2rγ(null) mice and to produce cells from multiple lineages, although with a reduction in the modification levels relative to the in vitro samples. Importantly, ZFN-driven gene correction in CD34(+) cells from the bone marrow of patients with SCD resulted in the production of wild-type hemoglobin tetramers.


Assuntos
Anemia Falciforme/genética , Anemia Falciforme/terapia , Terapia Genética , Células-Tronco Hematopoéticas/metabolismo , Mutação , Globinas beta/genética , Anemia Falciforme/patologia , Animais , Antígenos CD34/análise , Sequência de Bases , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Células Cultivadas , Endodesoxirribonucleases/metabolismo , Sangue Fetal/transplante , Loci Gênicos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Dados de Sequência Molecular , Dedos de Zinco
9.
Cytotherapy ; 19(9): 1096-1112, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28733131

RESUMO

BACKGROUND AIMS: Gene therapy by autologous hematopoietic stem cell transplantation (HSCT) represents a new approach to treat sickle cell disease (SCD). Optimization of the manufacture, characterization and testing of the transduced hematopoietic stem cell final cell product (FCP), as well as an in depth in vivo toxicology study, are critical for advancing this approach to clinical trials. METHODS: Data are shown to evaluate and establish the feasibility of isolating, transducing with the Lenti/ßAS3-FB vector and cryopreserving CD34+ cells from human bone marrow (BM) at clinical scale. In vitro and in vivo characterization of the FCP was performed, showing that all the release criteria were successfully met. In vivo toxicology studies were conducted to evaluate potential toxicity of the Lenti/ßAS3-FB LV in the context of a murine BM transplant. RESULTS: Primary and secondary transplantation did not reveal any toxicity from the lentiviral vector. Additionally, vector integration site analysis of murine and human BM cells did not show any clonal skewing caused by insertion of the Lenti/ßAS3-FB vector in cells from primary and secondary transplanted mice. CONCLUSIONS: We present here a complete protocol, thoroughly optimized to manufacture, characterize and establish safety of a FCP for gene therapy of SCD.


Assuntos
Anemia Falciforme/terapia , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas , Adulto , Animais , Antígenos CD34/metabolismo , Células da Medula Óssea , Transplante de Medula Óssea , Estudos de Casos e Controles , Ensaios Clínicos Fase I como Assunto , Vetores Genéticos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Lentivirus/genética , Camundongos Endogâmicos NOD , Transdução Genética , Transplante Autólogo/métodos
10.
Stem Cells ; 33(5): 1532-42, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25588820

RESUMO

Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by ß-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-ß(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy.


Assuntos
Terapia Genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Transdução Genética , ADP-Ribosil Ciclase 1/metabolismo , Animais , Antígenos CD34/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Separação Celular , Células Eritroides/citologia , Vetores Genéticos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lentivirus/genética , Camundongos Endogâmicos NOD , Receptores de LDL/metabolismo
11.
Mol Ther ; 22(3): 607-622, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24256635

RESUMO

Gene transfer into autologous hematopoietic stem cells by γ-retroviral vectors (gRV) is an effective treatment for adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID). However, current gRV have significant potential for insertional mutagenesis as reported in clinical trials for other primary immunodeficiencies. To improve the efficacy and safety of ADA-SCID gene therapy (GT), we generated a self-inactivating lentiviral vector (LV) with a codon-optimized human cADA gene under the control of the short form elongation factor-1α promoter (LV EFS ADA). In ADA(-/-) mice, LV EFS ADA displayed high-efficiency gene transfer and sufficient ADA expression to rescue ADA(-/-) mice from their lethal phenotype with good thymic and peripheral T- and B-cell reconstitution. Human ADA-deficient CD34(+) cells transduced with 1-5 × 10(7) TU/ml had 1-3 vector copies/cell and expressed 1-2x of normal endogenous levels of ADA, as assayed in vitro and by transplantation into immune-deficient mice. Importantly, in vitro immortalization assays demonstrated that LV EFS ADA had significantly less transformation potential compared to gRV vectors, and vector integration-site analysis by nrLAM-PCR of transduced human cells grown in immune-deficient mice showed no evidence of clonal skewing. These data demonstrated that the LV EFS ADA vector can effectively transfer the human ADA cDNA and promote immune and metabolic recovery, while reducing the potential for vector-mediated insertional mutagenesis.


Assuntos
Adenosina Desaminase/deficiência , Adenosina Desaminase/genética , Agamaglobulinemia/imunologia , Agamaglobulinemia/terapia , Vetores Genéticos/efeitos adversos , Lentivirus/genética , Fator 1 de Elongação de Peptídeos/genética , Imunodeficiência Combinada Severa/imunologia , Imunodeficiência Combinada Severa/terapia , Adenosina Desaminase/imunologia , Adenosina Desaminase/metabolismo , Agamaglobulinemia/genética , Agamaglobulinemia/patologia , Animais , Linfócitos B/imunologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Células HEK293 , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/patologia , Linfócitos T/imunologia , Transdução Genética , Integração Viral
12.
Blood ; 120(18): 3677-87, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22833548

RESUMO

Gene therapy (GT) for adenosine deaminase-deficient severe combined immune deficiency (ADA-SCID) can provide significant long-term benefit when patients are given nonmyeloablative conditioning and ADA enzyme-replacement therapy (ERT) is withheld before autologous transplantation of γ-retroviral vector-transduced BM CD34+ cells. To determine the contributions of conditioning and discontinuation of ERT to the therapeutic effects, we analyzed these factors in Ada gene knockout mice (Ada(-/-)). Mice were transplanted with ADA-deficient marrow transduced with an ADA-expressing γ-retroviral vector without preconditioning or after 200 cGy or 900 cGy total-body irradiation and evaluated after 4 months. In all tissues analyzed, vector copy numbers (VCNs) were 100- to 1000-fold greater in mice receiving 900 cGy compared with 200 cGy (P < .05). In mice receiving 200 cGy, VCN was similar whether ERT was stopped or given for 1 or 4 months after GT. In unconditioned mice, there was decreased survival with and without ERT, and VCN was very low to undetectable. When recipients were conditioned with 200 cGy and received transduced lineage-depleted marrow, only recipients receiving ERT (1 or 4 months) had detectable vector sequences in thymocytes. In conclusion, cytoreduction is important for the engraftment of gene-transduced HSC, and short-term ERT after GT did not diminish the capacity of gene-corrected cells to engraft and persist.


Assuntos
Adenosina Desaminase/uso terapêutico , Agamaglobulinemia/terapia , Transplante de Medula Óssea/métodos , Terapia Genética/métodos , Imunodeficiência Combinada Severa/terapia , Condicionamento Pré-Transplante/métodos , Adenosina Desaminase/deficiência , Animais , Modelos Animais de Doenças , Vetores Genéticos , Transplante de Células-Tronco Hematopoéticas/métodos , Camundongos , Camundongos Knockout , Retroviridae , Transdução Genética
13.
Mol Ther ; 21(5): 1044-54, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23380815

RESUMO

Transduction and transplantation of human hematopoietic stem/progenitor cells (HSPC) with the genes for a T-cell receptor (TCR) that recognizes a tumor-associated antigen may lead to sustained long-term production of T cells expressing the TCR and confer specific antitumor activity. We evaluated this using a lentiviral vector (CCLc-MND-F5) carrying cDNA for a human TCR specific for an HLA-A*0201-restricted peptide of Melanoma Antigen Recognized by T cells (MART-1). CD34(+) HSPC were transduced with the F5 TCR lentiviral vector or mock transduced and transplanted into neonatal NSG mice or NSG mice transgenic for human HLA-A*0201 (NSG-A2). Human CD8(+) and CD4(+) T cells expressing the human F5 TCR were present in the thymus, spleen, and peripheral blood after 4-5 months. Expression of human HLA-A*0201 in NSG-A2 recipient mice led to significantly increased numbers of human CD8(+) and CD4(+) T cells expressing the F5 TCR, compared with control NSG recipients. Transduction of the human CD34(+) HSPC by the F5 TCR transgene caused a high degree of allelic exclusion, potently suppressing rearrangement of endogenous human TCR-ß genes during thymopoiesis. In summary, we demonstrated the feasibility of engineering human HSPC to express a tumor-specific TCR to serve as a long-term source of tumor-targeted mature T cells for immunotherapy of melanoma.


Assuntos
Alelos , Células-Tronco Hematopoéticas/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Subpopulações de Linfócitos T/metabolismo , Animais , Antígenos CD34/metabolismo , Células Sanguíneas/citologia , Células Sanguíneas/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Epitopos de Linfócito T/imunologia , Feminino , Ordem dos Genes , Vetores Genéticos/genética , Sobrevivência de Enxerto , Transplante de Células-Tronco Hematopoéticas , Humanos , Interferon gama/biossíntese , Lentivirus/genética , Masculino , Melanoma/genética , Melanoma/imunologia , Melanoma/terapia , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Timócitos/citologia , Timócitos/metabolismo , Transdução Genética , Transplante Heterólogo
14.
J Endocr Soc ; 7(12): bvad131, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37953901

RESUMO

The human adrenal gland consists of concentrically organized, functionally distinct regions responsible for hormone production. Dysregulation of adrenocortical cell differentiation alters the proportion and organization of the functional zones of the adrenal cortex leading to disease. Current models of adrenocortical cell differentiation are based on mouse studies, but there are known organizational and functional differences between human and mouse adrenal glands. This study aimed to investigate the centripetal differentiation model in the human adrenal cortex and characterize aldosterone-producing micronodules (APMs) to better understand adrenal diseases such as primary aldosteronism. We applied spatially resolved in situ transcriptomics to human adrenal tissue sections from 2 individuals and identified distinct cell populations and their positional relationships. The results supported the centripetal differentiation model in humans, with cells progressing from the outer capsule to the zona glomerulosa, zona fasciculata, and zona reticularis. Additionally, we characterized 2 APMs in a 72-year-old woman. Comparison with earlier APM transcriptomes indicated a subset of core genes, but also heterogeneity between APMs. The findings contribute to our understanding of normal and pathological cellular differentiation in the human adrenal cortex.

15.
Mol Ther Methods Clin Dev ; 20: 765-778, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33738330

RESUMO

Adenosine deaminase (ADA) deficiency is an inborn error of metabolism affecting multiple systems and causing severe combined immunodeficiency. We tested intravenous administration of recombinant adeno-associated virus (AAV) 2/8-ADA vector in ADA-deficient neonate and adult mice or as part of a bimodal approach comprised of rAAV treatment at birth followed by infusion of lentiviral vector (LV)-modified lineage-depleted bone marrow cells at 8 weeks. ADA-/- mice treated with rAAV and enzyme replacement therapy (ERT) for 30 days were rescued from the lethal pulmonary insufficiency, surviving out to 180 days without further treatment. rAAV vector copy number (VCN) was highest in liver, lung, and heart and was associated with near-normal ADA activity and thymocyte development. In the bimodal approach, rAAV-mediated ADA expression supported survival during the 4 weeks before infusion of the LV-modified bone marrow cells and during the engraftment period. Conditioning prior to infusion may have resulted in the replacement of rAAV marked cells in marrow and liver, with LV VCN 100- to 1,000-fold higher in hematopoietic tissue compared with rAAV VCN, and was associated with immune cell reconstitution. In conclusion, a bimodal approach may be an alternative for patients without reliable access to ERT before receiving a stem cell transplant or gene therapy.

16.
Mol Ther Methods Clin Dev ; 16: 78-93, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-31871959

RESUMO

Adenosine deaminase (ADA)-deficient mice and healthy rhesus monkeys were studied to determine the impact of age at treatment, vector dosage, dosing schedule, repeat administration, biodistribution, and immunogenicity after systemic delivery of lentiviral vectors (LVs). In Ada -/- mice, neonatal treatment resulted in broad vector marking across all tissues analyzed, whereas adult treatment resulted in marking restricted to the liver, spleen, and bone marrow. Intravenous administration to infant rhesus monkeys also resulted in dose-dependent marking in the liver, spleen, and bone marrow. Using an ELISA to monitor anti-vector antibody development, Ada -/- neonatal mice did not produce an antibody response, whereas Ada -/- adult mice produced a strong antibody response to vector administration. In mice and monkeys with repeat administration of LV, a strong anti-vector antibody response was shown in response to the second LV administration, which resulted in LV inactivation. Three separate doses administered to immune competent mice resulted in acute toxicity. Pegylation of the vesicular stomatitis virus G protein (VSV-G)-enveloped LVs showed a less robust anti-vector response but did not prevent the inactivation of the second LV administration. These studies identify important factors to consider related to age and timing of administration when implementing systemic delivery of LVs as a potential therapeutic agent.

17.
Hum Gene Ther ; 29(10): 1153-1166, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30198339

RESUMO

Sickle cell disease (SCD) is an inherited blood disorder caused by a single amino acid substitution in the ß-globin chain of hemoglobin. Gene therapy is a promising therapeutic alternative, particularly in patients lacking an allogeneic bone marrow (BM) donor. One of the major challenges for an effective gene therapy approach is the design of an efficient vector that combines high-level and long-term ß-globin expression with high infectivity in primary CD34+ cells. Two lentiviral vectors carrying an anti-sickling ß-globin transgene (AS3) were directly compared: the Lenti/ßAS3-FB, and Globe-AS3 with and without the FB insulator. The comparison was performed initially in human BM CD34+ cells derived from SCD patients in an in vitro model of erythroid differentiation. Additionally, the comparison was carried out in two in vivo models: First, an NOD SCID gamma mouse model was used to compare transduction efficiency and ß-globin expression in human BM CD34+ cells after transplant. Second, a sickle mouse model was used to analyze ß-globin expression produced from the vectors tested, as well as hematologic correction of the sickle phenotype. While minor differences were found in the vectors in the in vitro study (2.4-fold higher vector copy number in CD34+ cells when using Globe-AS3), no differences were noted in the overall correction of the SCD phenotype in the in vivo mouse model. This study provides a comprehensive in vitro and in vivo analysis of two globin lentiviral vectors, which is useful for determining the optimal candidate for SCD gene therapy.


Assuntos
Anemia Falciforme/genética , Anemia Falciforme/terapia , Terapia Genética , Globinas beta/genética , Animais , Diferenciação Celular , Ensaio de Unidades Formadoras de Colônias , Modelos Animais de Doenças , Expressão Gênica , Ordem dos Genes , Terapia Genética/métodos , Vetores Genéticos/química , Vetores Genéticos/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lentivirus/genética , Camundongos , Fenótipo , RNA Mensageiro/genética , Transdução Genética , Resultado do Tratamento
18.
Cell Rep ; 23(9): 2606-2616, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29847792

RESUMO

X-linked hyper-immunoglobulin M (hyper-IgM) syndrome (XHIM) is a primary immunodeficiency due to mutations in CD40 ligand that affect immunoglobulin class-switch recombination and somatic hypermutation. The disease is amenable to gene therapy using retroviral vectors, but dysregulated gene expression results in abnormal lymphoproliferation in mouse models, highlighting the need for alternative strategies. Here, we demonstrate the ability of both the transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) platforms to efficiently drive integration of a normal copy of the CD40L cDNA delivered by Adeno-Associated Virus. Site-specific insertion of the donor sequence downstream of the endogenous CD40L promoter maintained physiologic expression of CD40L while overriding all reported downstream mutations. High levels of gene modification were achieved in primary human hematopoietic stem cells (HSCs), as well as in cell lines and XHIM-patient-derived T cells. Notably, gene-corrected HSCs engrafted in immunodeficient mice at clinically relevant frequencies. These studies provide the foundation for a permanent curative therapy in XHIM.


Assuntos
Edição de Genes , Doenças Genéticas Ligadas ao Cromossomo X/genética , Células-Tronco Hematopoéticas/metabolismo , Síndrome de Imunodeficiência com Hiper-IgM/genética , Animais , Antígenos CD34/metabolismo , Sequência de Bases , Ligante de CD40/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem Celular , Ensaio de Unidades Formadoras de Colônias , Reparo do DNA , DNA Complementar/genética , Humanos , Camundongos , Linfócitos T/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo
19.
Exp Hematol ; 43(5): 346-351, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25681747

RESUMO

Sickle cell disease (SCD) can be cured by allogeneic hematopoietic stem cell transplant. However, this is only possible when a matched donor is available, making the development of gene therapy using autologous hematopoietic stem cells a highly desirable alternative. We used a culture model of human erythropoiesis to directly compare two insulated, self-inactivating, and erythroid-specific lentiviral vectors, encoding for γ-globin (V5m3-400) or a modified ß-globin (ßAS3-FB) for production of antisickling hemoglobin (Hb) and correction of red cell deformability after deoxygenation. Bone marrow CD34+ cells from three SCD patients were transduced using V5m3-400 or ßAS3-FB and compared with mock-transduced SCD or healthy donor CD34+ cells. Lentiviral transduction did not impair cell growth or differentiation, as gauged by proliferation and acquisition of erythroid markers. Vector copy number averaged approximately one copy per cell, and corrective globin mRNA levels were increased more than sevenfold over mock-transduced controls. Erythroblasts derived from healthy donor and mock-transduced SCD cells produced a low level of fetal Hb that was increased to 23.6 ± 4.1% per vector copy for cells transduced with V5m3-400. Equivalent levels of modified normal adult Hb of 17.6 ± 3.8% per vector copy were detected for SCD cells transduced with ßAS3-FB. These levels of antisickling Hb production were sufficient to reduce sickling of terminal-stage red blood cells upon deoxygenation. We concluded that the achieved levels of fetal Hb and modified normal adult Hb would likely prove therapeutic to SCD patients who lack matched donors.


Assuntos
Células da Medula Óssea/metabolismo , Lentivirus/genética , Globinas beta/genética , gama-Globinas/genética , Anemia Falciforme/genética , Anemia Falciforme/terapia , Antígenos CD34/metabolismo , Hemoglobina Fetal/genética , Citometria de Fluxo , Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Hemoglobinas/genética , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Globinas beta/metabolismo , gama-Globinas/metabolismo
20.
Mol Ther Methods Clin Dev ; 2: 15012, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029723

RESUMO

Lentiviral vectors designed for the treatment of the hemoglobinopathies require the inclusion of regulatory and strong enhancer elements to achieve sufficient expression of the ß-globin transgene. Despite the inclusion of these elements, the efficacy of these vectors may be limited by transgene silencing due to the genomic environment surrounding the integration site. Barrier insulators can be used to give more consistent expression and resist silencing even with lower vector copies. Here, the barrier activity of an insulator element from the human ankyrin-1 gene was analyzed in a lentiviral vector carrying an antisickling human ß-globin gene. Inclusion of a single copy of the Ankyrin insulator did not affect viral titer, and improved the consistency of expression from the vector in murine erythroleukemia cells. The presence of the Ankyrin insulator element did not change transgene expression in human hematopoietic cells in short-term erythroid culture or in vivo in primary murine transplants. However, analysis in secondary recipients showed that the lentiviral vector with the Ankyrin element preserved transgene expression, whereas expression from the vector lacking the Ankyrin insulator decreased in secondary recipients. These studies demonstrate that the Ankyrin insulator may improve long-term ß-globin expression in hematopoietic stem cells for gene therapy of hemoglobinopathies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA