Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 23(8): 1246-1255, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35817845

RESUMO

Lymph nodes (LNs) comprise two main structural elements: fibroblastic reticular cells that form dedicated niches for immune cell interaction and capsular fibroblasts that build a shell around the organ. Immunological challenge causes LNs to increase more than tenfold in size within a few days. Here, we characterized the biomechanics of LN swelling on the cellular and organ scale. We identified lymphocyte trapping by influx and proliferation as drivers of an outward pressure force, causing fibroblastic reticular cells of the T-zone (TRCs) and their associated conduits to stretch. After an initial phase of relaxation, TRCs sensed the resulting strain through cell matrix adhesions, which coordinated local growth and remodeling of the stromal network. While the expanded TRC network readopted its typical configuration, a massive fibrotic reaction of the organ capsule set in and countered further organ expansion. Thus, different fibroblast populations mechanically control LN swelling in a multitier fashion.


Assuntos
Linfonodos , Células Estromais , Animais , Fibroblastos , Linfócitos , Camundongos , Camundongos Endogâmicos C57BL
2.
Nature ; 609(7927): 575-581, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071161

RESUMO

The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear1-3. Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades1,4. Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H+-ATPase and accelerated cytoplasmic streaming. abp1 and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abp1 mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Proteínas Serina-Treonina Quinases , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Corrente Citoplasmática , Concentração de Íons de Hidrogênio , Ácidos Indolacéticos/metabolismo , Mutação , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , ATPases Translocadoras de Prótons/metabolismo
3.
Plant Cell ; 34(6): 2150-2173, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35218346

RESUMO

In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.


Assuntos
Arabidopsis , Vesículas Revestidas por Clatrina , Arabidopsis/genética , Arabidopsis/metabolismo , Clatrina/metabolismo , Vesículas Revestidas por Clatrina/química , Vesículas Revestidas por Clatrina/metabolismo , Endocitose , Proteoma/metabolismo , Proteômica , Fator de Transcrição AP-1/análise , Fator de Transcrição AP-1/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165179

RESUMO

Tension of the actomyosin cell cortex plays a key role in determining cell-cell contact growth and size. The level of cortical tension outside of the cell-cell contact, when pulling at the contact edge, scales with the total size to which a cell-cell contact can grow [J.-L. Maître et al., Science 338, 253-256 (2012)]. Here, we show in zebrafish primary germ-layer progenitor cells that this monotonic relationship only applies to a narrow range of cortical tension increase and that above a critical threshold, contact size inversely scales with cortical tension. This switch from cortical tension increasing to decreasing progenitor cell-cell contact size is caused by cortical tension promoting E-cadherin anchoring to the actomyosin cytoskeleton, thereby increasing clustering and stability of E-cadherin at the contact. After tension-mediated E-cadherin stabilization at the contact exceeds a critical threshold level, the rate by which the contact expands in response to pulling forces from the cortex sharply drops, leading to smaller contacts at physiologically relevant timescales of contact formation. Thus, the activity of cortical tension in expanding cell-cell contact size is limited by tension-stabilizing E-cadherin-actin complexes at the contact.


Assuntos
Caderinas/metabolismo , Células Germinativas/fisiologia , Células-Tronco/fisiologia , Citoesqueleto de Actina/fisiologia , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Caderinas/fisiologia , Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Proliferação de Células/fisiologia , Citoesqueleto/fisiologia , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Peixe-Zebra/metabolismo , alfa Catenina/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34907016

RESUMO

Clathrin-mediated endocytosis is the major route of entry of cargos into cells and thus underpins many physiological processes. During endocytosis, an area of flat membrane is remodeled by proteins to create a spherical vesicle against intracellular forces. The protein machinery which mediates this membrane bending in plants is unknown. However, it is known that plant endocytosis is actin independent, thus indicating that plants utilize a unique mechanism to mediate membrane bending against high-turgor pressure compared to other model systems. Here, we investigate the TPLATE complex, a plant-specific endocytosis protein complex. It has been thought to function as a classical adaptor functioning underneath the clathrin coat. However, by using biochemical and advanced live microscopy approaches, we found that TPLATE is peripherally associated with clathrin-coated vesicles and localizes at the rim of endocytosis events. As this localization is more fitting to the protein machinery involved in membrane bending during endocytosis, we examined cells in which the TPLATE complex was disrupted and found that the clathrin structures present as flat patches. This suggests a requirement of the TPLATE complex for membrane bending during plant clathrin-mediated endocytosis. Next, we used in vitro biophysical assays to confirm that the TPLATE complex possesses protein domains with intrinsic membrane remodeling activity. These results redefine the role of the TPLATE complex and implicate it as a key component of the evolutionarily distinct plant endocytosis mechanism, which mediates endocytic membrane bending against the high-turgor pressure in plant cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/fisiologia , Endocitose/fisiologia , Células Vegetais/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clatrina , Corantes Fluorescentes , Microscopia Eletrônica de Transmissão e Varredura , Microscopia de Fluorescência/métodos , Plântula
6.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782113

RESUMO

In nerve cells the genes encoding for α2δ subunits of voltage-gated calcium channels have been linked to synaptic functions and neurological disease. Here we show that α2δ subunits are essential for the formation and organization of glutamatergic synapses. Using a cellular α2δ subunit triple-knockout/knockdown model, we demonstrate a failure in presynaptic differentiation evidenced by defective presynaptic calcium channel clustering and calcium influx, smaller presynaptic active zones, and a strongly reduced accumulation of presynaptic vesicle-associated proteins (synapsin and vGLUT). The presynaptic defect is associated with the downscaling of postsynaptic AMPA receptors and the postsynaptic density. The role of α2δ isoforms as synaptic organizers is highly redundant, as each individual α2δ isoform can rescue presynaptic calcium channel trafficking and expression of synaptic proteins. Moreover, α2δ-2 and α2δ-3 with mutated metal ion-dependent adhesion sites can fully rescue presynaptic synapsin expression but only partially calcium channel trafficking, suggesting that the regulatory role of α2δ subunits is independent from its role as a calcium channel subunit. Our findings influence the current view on excitatory synapse formation. First, our study suggests that postsynaptic differentiation is secondary to presynaptic differentiation. Second, the dependence of presynaptic differentiation on α2δ implicates α2δ subunits as potential nucleation points for the organization of synapses. Finally, our results suggest that α2δ subunits act as transsynaptic organizers of glutamatergic synapses, thereby aligning the synaptic active zone with the postsynaptic density.


Assuntos
Canais de Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Canais de Cálcio/genética , Células Cultivadas , Hipocampo/citologia , Camundongos Knockout , Terminações Pré-Sinápticas/ultraestrutura , Isoformas de Proteínas/metabolismo
7.
J Cell Sci ; 133(15)2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32616560

RESUMO

Clathrin-mediated endocytosis (CME) is a crucial cellular process implicated in many aspects of plant growth, development, intra- and intercellular signaling, nutrient uptake and pathogen defense. Despite these significant roles, little is known about the precise molecular details of how CME functions in planta To facilitate the direct quantitative study of plant CME, we review current routinely used methods and present refined, standardized quantitative imaging protocols that allow the detailed characterization of CME at multiple scales in plant tissues. These protocols include: (1) an efficient electron microscopy protocol for the imaging of Arabidopsis CME vesicles in situ, thus providing a method for the detailed characterization of the ultrastructure of clathrin-coated vesicles; (2) a detailed protocol and analysis for quantitative live-cell fluorescence microscopy to precisely examine the temporal interplay of endocytosis components during single CME events; (3) a semi-automated analysis to allow the quantitative characterization of global internalization of cargos in whole plant tissues; and (4) an overview and validation of useful genetic and pharmacological tools to interrogate the molecular mechanisms and function of CME in intact plant samples.This article has an associated First Person interview with the first author of the paper.


Assuntos
Arabidopsis , Clatrina , Arabidopsis/genética , Vesículas Revestidas por Clatrina , Endocitose , Microscopia de Fluorescência
8.
New Phytol ; 229(1): 351-369, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32810889

RESUMO

Cell and tissue polarization is fundamental for plant growth and morphogenesis. The polar, cellular localization of Arabidopsis PIN-FORMED (PIN) proteins is crucial for their function in directional auxin transport. The clustering of PIN polar cargoes within the plasma membrane has been proposed to be important for the maintenance of their polar distribution. However, the more detailed features of PIN clusters and the cellular requirements of cargo clustering remain unclear. Here, we characterized PIN clusters in detail by means of multiple advanced microscopy and quantification methods, such as 3D quantitative imaging or freeze-fracture replica labeling. The size and aggregation types of PIN clusters were determined by electron microscopy at the nanometer level at different polar domains and at different developmental stages, revealing a strong preference for clustering at the polar domains. Pharmacological and genetic studies revealed that PIN clusters depend on phosphoinositol pathways, cytoskeletal structures and specific cell-wall components as well as connections between the cell wall and the plasma membrane. This study identifies the role of different cellular processes and structures in polar cargo clustering and provides initial mechanistic insight into the maintenance of polarity in plants and other systems.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Polaridade Celular , Análise por Conglomerados , Ácidos Indolacéticos , Proteínas de Membrana Transportadoras
9.
Proc Natl Acad Sci U S A ; 114(26): E5246-E5255, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607047

RESUMO

Many central synapses contain a single presynaptic active zone and a single postsynaptic density. Vesicular release statistics at such "simple synapses" indicate that they contain a small complement of docking sites where vesicles repetitively dock and fuse. In this work, we investigate functional and morphological aspects of docking sites at simple synapses made between cerebellar parallel fibers and molecular layer interneurons. Using immunogold labeling of SDS-treated freeze-fracture replicas, we find that Cav2.1 channels form several clusters per active zone with about nine channels per cluster. The mean value and range of intersynaptic variation are similar for Cav2.1 cluster numbers and for functional estimates of docking-site numbers obtained from the maximum numbers of released vesicles per action potential. Both numbers grow in relation with synaptic size and decrease by a similar extent with age between 2 wk and 4 wk postnatal. Thus, the mean docking-site numbers were 3.15 at 2 wk (range: 1-10) and 2.03 at 4 wk (range: 1-4), whereas the mean numbers of Cav2.1 clusters were 2.84 at 2 wk (range: 1-8) and 2.37 at 4 wk (range: 1-5). These changes were accompanied by decreases of miniature current amplitude (from 93 pA to 56 pA), active-zone surface area (from 0.0427 µm2 to 0.0234 µm2), and initial success rate (from 0.609 to 0.353), indicating a tightening of synaptic transmission with development. Altogether, these results suggest a close correspondence between the number of functionally defined vesicular docking sites and that of clusters of voltage-gated calcium channels.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Ratos , Ratos Sprague-Dawley
10.
Traffic ; 14(8): 886-94, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23631675

RESUMO

Electrospun nanofibres are an excellent cell culture substrate, enabling the fast and non-disruptive harvest and transfer of adherent cells for microscopical and biochemical analyses. Metabolic activity and cellular structures are maintained during the only half a minute-long harvest and transfer process. We show here that such samples can be optimally processed by means of cryofixation combined either with freeze-substitution, sample rehydration and cryosection-immunolabelling or with freeze-fracture replica-immunolabelling. Moreover, electrospun fibre substrates are equally suitable for complementary approaches, such as biochemistry, fluorescence microscopy and cytochemistry.


Assuntos
Microscopia Crioeletrônica/métodos , Células CACO-2 , Espaço Extracelular/química , Gelatina/química , Células HeLa , Humanos , Imuno-Histoquímica/métodos , Nanofibras/química
11.
Eur J Neurosci ; 41(2): 157-67, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25377770

RESUMO

Type 1 metabotropic glutamate (mGlu1) receptors play a pivotal role in different forms of synaptic plasticity in the cerebellar cortex, e.g. long-term depression at glutamatergic synapses and rebound potentiation at GABAergic synapses. These various forms of plasticity might depend on the subsynaptic arrangement of the receptor in Purkinje cells that can be regulated by protein-protein interactions. This study investigated, by means of the freeze-fracture replica immunogold labelling method, the subcellular localization of mGlu1 receptors in the rodent cerebellum and whether Homer proteins regulate their subsynaptic distribution. We observed a widespread extrasynaptic localization of mGlu1 receptors and confirmed their peri-synaptic enrichment at glutamatergic synapses. Conversely, we detected mGlu1 receptors within the main body of GABAergic synapses onto Purkinje cell dendrites. Although Homer proteins are known to interact with the mGlu1 receptor C-terminus, we could not detect Homer3, the most abundant Homer protein in the cerebellar cortex, at GABAergic synapses by pre-embedding and post-embedding immunoelectron microscopy. We then hypothesized a critical role for Homer proteins in the peri-junctional localization of mGlu1 receptors at glutamatergic synapses. To disrupt Homer-associated protein complexes, mice were tail-vein injected with the membrane-permeable dominant-negative TAT-Homer1a. Freeze-fracture replica immunogold labelling analysis showed no significant alteration in the mGlu1 receptor distribution pattern at parallel fibre-Purkinje cell synapses, suggesting that other scaffolding proteins are involved in the peri-synaptic confinement. The identification of interactors that regulate the subsynaptic localization of the mGlu1 receptor at neurochemically distinct synapses may offer new insight into its trafficking and intracellular signalling.


Assuntos
Córtex Cerebelar/metabolismo , Ácido Glutâmico/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Western Blotting , Proteínas de Transporte/metabolismo , Córtex Cerebelar/ultraestrutura , Proteínas de Arcabouço Homer , Imuno-Histoquímica , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Células de Purkinje/metabolismo , Células de Purkinje/ultraestrutura , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/genética , Sinapses/ultraestrutura
12.
J Exp Bot ; 66(16): 5055-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25922490

RESUMO

The plant hormone auxin is a key regulator of plant growth and development. Auxin levels are sensed and interpreted by distinct receptor systems that activate a broad range of cellular responses. The Auxin-Binding Protein1 (ABP1) that has been identified based on its ability to bind auxin with high affinity is a prime candidate for the extracellular receptor responsible for mediating a range of auxin effects, in particular, the fast non-transcriptional ones. Contradictory genetic studies suggested prominent or no importance of ABP1 in many developmental processes. However, how crucial the role of auxin binding to ABP1 is for its functions has not been addressed. Here, we show that the auxin-binding pocket of ABP1 is essential for its gain-of-function cellular and developmental roles. In total, 16 different abp1 mutants were prepared that possessed substitutions in the metal core or in the hydrophobic amino acids of the auxin-binding pocket as well as neutral mutations. Their analysis revealed that an intact auxin-binding pocket is a prerequisite for ABP1 to activate downstream components of the ABP1 signalling pathway, such as Rho of Plants (ROPs) and to mediate the clathrin association with membranes for endocytosis regulation. In planta analyses demonstrated the importance of the auxin binding pocket for all known ABP1-mediated postembryonic developmental processes, including morphology of leaf epidermal cells, root growth and root meristem activity, and vascular tissue differentiation. Taken together, these findings suggest that auxin binding to ABP1 is central to its function, supporting the role of ABP1 as auxin receptor.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Receptores de Superfície Celular/genética , Substituição de Aminoácidos , Arabidopsis/metabolismo , Mutagênese , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo
13.
Neuron ; 112(5): 755-771.e9, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38215739

RESUMO

The coupling between Ca2+ channels and release sensors is a key factor defining the signaling properties of a synapse. However, the coupling nanotopography at many synapses remains unknown, and it is unclear how it changes during development. To address these questions, we examined coupling at the cerebellar inhibitory basket cell (BC)-Purkinje cell (PC) synapse. Biophysical analysis of transmission by paired recording and intracellular pipette perfusion revealed that the effects of exogenous Ca2+ chelators decreased during development, despite constant reliance of release on P/Q-type Ca2+ channels. Structural analysis by freeze-fracture replica labeling (FRL) and transmission electron microscopy (EM) indicated that presynaptic P/Q-type Ca2+ channels formed nanoclusters throughout development, whereas docked vesicles were only clustered at later developmental stages. Modeling suggested a developmental transformation from a more random to a more clustered coupling nanotopography. Thus, presynaptic signaling developmentally approaches a point-to-point configuration, optimizing speed, reliability, and energy efficiency of synaptic transmission.


Assuntos
Sinapses , Transmissão Sináptica , Reprodutibilidade dos Testes , Células de Purkinje , Terminações Pré-Sinápticas , Cálcio
14.
Acta Neuropathol ; 124(1): 51-65, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22491959

RESUMO

Multiple system atrophy (MSA) is a progressive late onset neurodegenerative α-synucleinopathy with unclear pathogenesis. Recent genetic and pathological studies support a central role of α-synuclein (αSYN) in MSA pathogenesis. Oligodendroglial cytoplasmic inclusions of fibrillar αSYN and dysfunction of the ubiquitin-proteasome system are suggestive of proteolytic stress in this disorder. To address the possible pathogenic role of oligodendroglial αSYN accumulation and proteolytic failure in MSA we applied systemic proteasome inhibition (PSI) in transgenic mice with oligodendroglial human αSYN expression and determined the presence of MSA-like neurodegeneration in this model as compared to wild-type mice. PSI induced open field motor disability in transgenic αSYN mice but not in wild-type mice. The motor phenotype corresponded to progressive and selective neuronal loss in the striatonigral and olivopontocerebellar systems of PSI-treated transgenic αSYN mice. In contrast no neurodegeneration was detected in PSI-treated wild-type controls. PSI treatment of transgenic αSYN mice was associated with significant ultrastructural alterations including accumulation of fibrillar human αSYN in the cytoplasm of oligodendroglia, which resulted in myelin disruption and demyelination characterized by increased g-ratio. The oligodendroglial and myelin pathology was accompanied by axonal degeneration evidenced by signs of mitochondrial stress and dysfunctional axonal transport in the affected neurites. In summary, we provide new evidence supporting a primary role of proteolytic failure and suggesting a neurodegenerative pathomechanism related to disturbed oligodendroglial/myelin trophic support in the pathogenesis of MSA.


Assuntos
Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/patologia , Oligodendroglia/efeitos dos fármacos , Oligopeptídeos/toxicidade , alfa-Sinucleína/metabolismo , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Análise de Variância , Animais , Autofagia/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Imunoeletrônica , Atividade Motora/efeitos dos fármacos , Proteína Proteolipídica de Mielina/genética , Doenças Neurodegenerativas/fisiopatologia , Oligodendroglia/metabolismo , Oligodendroglia/ultraestrutura , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Tempo , Tirosina 3-Mono-Oxigenase , Ubiquitina/metabolismo , alfa-Sinucleína/genética
15.
Mol Plant ; 15(10): 1533-1542, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36081349

RESUMO

Biological systems are the sum of their dynamic three-dimensional (3D) parts. Therefore, it is critical to study biological structures in 3D and at high resolution to gain insights into their physiological functions. Electron microscopy of metal replicas of unroofed cells and isolated organelles has been a key technique to visualize intracellular structures at nanometer resolution. However, many of these methods require specialized equipment and personnel to complete them. Here, we present novel accessible methods to analyze biological structures in unroofed cells and biochemically isolated organelles in 3D and at nanometer resolution, focusing on Arabidopsis clathrin-coated vesicles (CCVs). While CCVs are essential trafficking organelles, their detailed structural information is lacking due to their poor preservation when observed via classical electron microscopy protocols experiments. First, we establish a method to visualize CCVs in unroofed cells using scanning transmission electron microscopy tomography, providing sufficient resolution to define the clathrin coat arrangements. Critically, the samples are prepared directly on electron microscopy grids, removing the requirement to use extremely corrosive acids, thereby enabling the use of this method in any electron microscopy lab. Secondly, we demonstrate that this standardized sample preparation allows the direct comparison of isolated CCV samples with those visualized in cells. Finally, to facilitate the high-throughput and robust screening of metal replicated samples, we provide a deep learning analysis method to screen the "pseudo 3D" morphologies of CCVs imaged with 2D modalities. Collectively, our work establishes accessible ways to examine the 3D structure of biological samples and provide novel insights into the structure of plant CCVs.


Assuntos
Cáusticos , Vesículas Revestidas por Clatrina , Cáusticos/análise , Clatrina , Vesículas Revestidas por Clatrina/química , Vesículas Revestidas por Clatrina/ultraestrutura , Endocitose/fisiologia , Imageamento Tridimensional
16.
Parkinsonism Relat Disord ; 91: 59-65, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34530328

RESUMO

The evidence linking innate immunity mechanisms and neurodegenerative diseases is growing, but the specific mechanisms are incompletely understood. Experimental data suggest that microglial TLR4 mediates the uptake and clearance of α-synuclein also termed synucleinophagy. The accumulation of misfolded α-synuclein throughout the brain is central to Parkinson's disease (PD). The distribution and progression of the pathology is often attributed to the propagation of α-synuclein. Here, we apply a classical α-synuclein propagation model of prodromal PD in wild type and TLR4 deficient mice to study the role of TLR4 in the progression of the disease. Our data suggest that TLR4 deficiency facilitates the α-synuclein seed spreading associated with reduced lysosomal activity of microglia. Three months after seed inoculation, more pronounced proteinase K-resistant α-synuclein inclusion pathology is observed in mice with TLR4 deficiency. The facilitated propagation of α-synuclein is associated with early loss of dopamine transporter (DAT) signal in the striatum and loss of dopaminergic neurons in substantia nigra pars compacta of TLR4 deficient mice. These new results support TLR4 signaling as a putative target for disease modification to slow the progression of PD and related disorders.


Assuntos
Degeneração Neural/genética , Doença de Parkinson/genética , Transdução de Sinais/genética , Receptor 4 Toll-Like/deficiência , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Lisossomos/metabolismo , Camundongos , Microglia/metabolismo , Parte Compacta da Substância Negra/metabolismo
17.
J Histochem Cytochem ; 66(12): 903-921, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29969056

RESUMO

For ultrafast fixation of biological samples to avoid artifacts, high-pressure freezing (HPF) followed by freeze substitution (FS) is preferred over chemical fixation at room temperature. After HPF, samples are maintained at low temperature during dehydration and fixation, while avoiding damaging recrystallization. This is a notoriously slow process. McDonald and Webb demonstrated, in 2011, that sample agitation during FS dramatically reduces the necessary time. Then, in 2015, we (H.G. and S.R.) introduced an agitation module into the cryochamber of an automated FS unit and demonstrated that the preparation of algae could be shortened from days to a couple of hours. We argued that variability in the processing, reproducibility, and safety issues are better addressed using automated FS units. For dissemination, we started low-cost manufacturing of agitation modules for two of the most widely used FS units, the Automatic Freeze Substitution Systems, AFS(1) and AFS2, from Leica Microsystems, using three dimensional (3D)-printing of the major components. To test them, several labs independently used the modules on a wide variety of specimens that had previously been processed by manual agitation, or without agitation. We demonstrate that automated processing with sample agitation saves time, increases flexibility with respect to sample requirements and protocols, and produces data of at least as good quality as other approaches.


Assuntos
Substituição ao Congelamento/métodos , Microscopia Eletrônica de Transmissão/métodos , Animais , Arabidopsis/ultraestrutura , Caenorhabditis elegans/ultraestrutura , Cerebelo/ultraestrutura , Chlorella/ultraestrutura , Desenho de Equipamento , Substituição ao Congelamento/economia , Substituição ao Congelamento/instrumentação , Congelamento , Masculino , Camundongos Endogâmicos C57BL , Pressão , Impressão Tridimensional , Fatores de Tempo
18.
J Neurosci ; 22(22): 9698-707, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12427825

RESUMO

Small-conductance Ca2+-activated K+ (SK) channels are important for excitability control and afterhyperpolarizations in vertebrate neurons and have been implicated in regulation of the functional state of the forebrain. We have examined the distribution, functional expression, and subunit composition of SK channels in rat brain. Immunoprecipitation detected solely homotetrameric SK2 and SK3 channels in native tissue and their constitutive association with calmodulin. Immunohistochemistry revealed a restricted distribution of SK1 and SK2 protein with highest densities in subregions of the hippocampus and neocortex. In contrast, SK3 protein was distributed more diffusely in these brain regions and predominantly expressed in phylogenetically older brain regions. Whole-cell recording showed a sharp segregation of apamin-sensitive SK current within the hippocampal formation, in agreement with the SK2 distribution, suggesting that SK2 homotetramers underlie the apamin-sensitive medium afterhyperpolarizations in rat hippocampus.


Assuntos
Encéfalo/metabolismo , Canais de Potássio Cálcio-Ativados , Canais de Potássio/metabolismo , Animais , Especificidade de Anticorpos , Apamina/farmacocinética , Ligação Competitiva/fisiologia , Encéfalo/citologia , Química Encefálica , Calmodulina/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Hipocampo/química , Hipocampo/citologia , Hipocampo/metabolismo , Imuno-Histoquímica , Técnicas In Vitro , Neocórtex/química , Neocórtex/citologia , Neocórtex/metabolismo , Oócitos/química , Oócitos/metabolismo , Especificidade de Órgãos/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio/análise , Testes de Precipitina , Ratos , Ratos Sprague-Dawley , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Xenopus
19.
Exp Gerontol ; 39(1): 101-13, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14724070

RESUMO

Synaptic disturbances may play a key role in the pathophysiology of Alzheimer's disease. To characterize differential synaptic alterations in the brains of Alzheimer patients, chromogranin A, chromogranin B and secretoneurin were applied as soluble constituents for large dense core vesicles, synaptophysin as a vesicle membrane marker and calbindin as a cytosolic protein. In controls, chromogranin B and secretogranin are largely co-contained in interneurons, whereas chromogranin A is mostly found in pyramidal neurons. In Alzheimer's disease, about 30% of beta-amyloid plaques co-labelled with chromogranin A, 20% with secretoneurin and 15% with chromogranin B. Less than 5% of beta-amyloid plaques contained synaptophysin or calbindin, respectively. Semiquantitative immunohistochemistry revealed a significant loss for chromogranin B- and secretoneurin-like immunoreactivity in the dorsolateral, the entorhinal, and orbitofrontal cortex. Chromogranin A displayed more complex changes. It was the only chromogranin peptide to be expressed in glial fibrillary acidic protein containing cells. About 40% of chromogranin A immunopositive plaques and extracellular deposits were surrounded and pervaded by activated microglia. The present study demonstrates a loss of presynaptic proteins involved in distinct steps of exocytosis. An imbalanced availability of chromogranins may be responsible for impaired neurotransmission and a reduced functioning of dense core vesicles. Chromogranin A is likely to be a mediator between neuronal, glial and inflammatory mechanisms found in Alzheimer disease.


Assuntos
Doença de Alzheimer/metabolismo , Química Encefálica , Cromograninas/análise , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Análise de Variância , Biomarcadores/análise , Calbindinas , Estudos de Casos e Controles , Cromogranina A , Exocitose/fisiologia , Feminino , Proteína Glial Fibrilar Ácida/análise , Humanos , Imuno-Histoquímica/métodos , Masculino , Microglia/patologia , Neuropeptídeos/análise , Proteína G de Ligação ao Cálcio S100/análise , Secretogranina II , Sinapses/patologia , Sinaptofisina/análise
20.
J Mol Neurosci ; 18(1-2): 53-63, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11931350

RESUMO

Chromogranin A, chromogranin B, and secretogranin II are acidic proteins which are stored in large dense core vesicles of neurons. An antiserum, raised against a synthetic peptide (PE-11), present in the chromogranin B molecule, and an antiserum raised against secretoneurin contained in the secretogranin II sequence, was used to localize these peptides together with chromogranin A in the human hippocampal formation. The distribution of these peptides was investigated in Alzheimer's disease and compared to control subjects. Chromogranin A, chromogranin B, and secretogranin II are distinctly distributed with an overlap in their distribution patterns. They were only detected in neuronal structures. The highest density of immunoreactivity was found for chromogranin B. A layer specific distribution was especially obvious in the inner molecular layer of the dentate gyrus as secretoneurin-like immunoreactivity was restricted to its innermost part whereas that of chromogranin B was highly concentrated throughout the inner molecular layer. In Alzheimer's disease, about 10 to 20% of the amyloid-immunoreactive plaques contained either chromogranin A, chromogranin B or secretoneurin. The density of secretoneurin-and chromogranin B-like immunoreactivity was significantly reduced in the inner molecular layer of the dentate gyyrs, the CA1 area, the subiculum and in layers I, III and V of the entorhinal cortex. The present study demonstrates that chromogranin peptides are markers for human hippocampal pathways. Thee are particularly suitable to study nerve fibers, terminating at the inner molecular layer of the dentate gyrus. Chromogranin peptides have a potential as neuronal markers for synaptic degeneration in Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Cromograninas/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Proteínas/metabolismo , Vesículas Secretórias/metabolismo , Sinapses/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Biomarcadores , Cromogranina A , Cromogranina B , Giro Denteado/metabolismo , Giro Denteado/patologia , Giro Denteado/fisiopatologia , Feminino , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neurônios/patologia , Neuropeptídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Secretogranina II , Sinapses/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA