Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 25(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630005

RESUMO

In this paper, we report the preparation of a new composite (TiO2/SiO2/γ-Fe2O3/rGO) with a high photocatalytic efficiency. The properties of the composite were examined by different analyses, including X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), photoluminescence (PL), UV-Visible light diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman, vibrating-sample magnetometer (VSM), and nitrogen gas physisorption (BET) studies. The photocatalytic efficiency of the proposed composite was evaluated by the degradation of methylene blue under UV and visible light, and the results were compared with titanium dioxide (TiO2), where degradation increased from 30% to 84% and 4% to 66% under UV and visible light, respectively. The significant increase in photocatalytic activity may be explained by the higher adsorption of dye on the surface of the composite and the higher separation and transfer of charge carriers, which in turn promote active sites and photocatalytic efficiency.


Assuntos
Compostos Férricos/química , Grafite/química , Magnetismo , Fotoquímica , Dióxido de Silício/química , Titânio/química , Catálise , Compostos Férricos/efeitos da radiação , Grafite/efeitos da radiação , Luz , Espectroscopia Fotoeletrônica , Dióxido de Silício/efeitos da radiação , Titânio/efeitos da radiação , Raios Ultravioleta
2.
ACS Appl Mater Interfaces ; 12(26): 29671-29683, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492345

RESUMO

A novel nanohybrid composite of TiO2, SiO2, γ-Fe2O3, and reduced graphene oxide (TiO2@Si:Fe:rGO) is fabricated by the sol-gel method. The properties of the coated film were examined by structural and self-cleaning analyses using simulated discoloration/soiling and roofing tests. The fabricated transparent TiO2@Si:Fe:rGO composite showed excellent photoactivity and wettability, behaving well in self-cleaning applications. The addition of SiO2 improved the crystalline structure and surface hydroxylation of TiO2 nanoparticles. γ-Fe2O3 decreased the recombination rate of e-/h+ pairs, and significantly improved photocatalytic activity under visible light. Moreover, rGO sheets as excellent electron acceptors and transporters also reduced recombination, as well as affected wettability, achieving superhydrophilicity under irradiation. The coated substrate showed excellent resistance to simulated acid rain and significantly preserved the substrate from soiling in roofing tests.

3.
Nanomaterials (Basel) ; 10(11)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238536

RESUMO

Decorating photocatalysts with noble metal nanoparticles (e.g., Pt) often increases the catalysts' photocatalytic activity and biomedical properties. Here, a simple and inexpensive method has been developed to prepare a Pt-Ag3PO4/CdS/chitosan composite, which was characterized and used for the visible light-induced photocatalytic and antibacterial studies. This synthesized composite showed superior photocatalytic activity for methylene blue degradation as a hazardous pollutant (the maximum dye degradation was observed in 90 min of treatment) and killing of Gram positive bacterial (Staphylococcus aureus and Bacillus cereus) as well as Gram negative bacteria (Klebsiella pneumoniae, Salmonella typhimurium, Escherichia coli, and Pseudomonas aeruginosa) under visible light irradiation. The antibacterial activity of CdS, CdS/Ag3PO4, and Pt-Ag3PO4/CdS/chitosan against E. coli, Pseudomonas aeruginosa, Salmonella typhimurium, Klebsiella pneumoniae, Staphylococcus aureus, and Bacillus cereus showed the zone of inhibition (mm) under visible light and under dark conditions at a concentration of 20 µg mL-1. Furthermore, the cell viability of the CdS/chitosan, Ag3PO4, Ag3PO4/CdS/chitosan, and Pt-Ag3PO4/CdS/chitosan were investigated on the human embryonic kidney 293 cells (HEK-293), Henrietta Lacks (HeLa), human liver cancer cell line (HepG2), and pheochromocytoma (PC12) cell lines. In addition, the results indicated that the photodegradation rate for Pt-Ag3PO4/CdS/chitosan is 3.53 times higher than that of CdS and 1.73 times higher than that of the CdS/Ag3PO4 composite. Moreover, Pt-Ag3PO4/CdS/chitosan with an optimal amount of CdS killed large areas of different bacteria and different cells separately in a shorter time period under visible-light irradiation, which shows significantly higher efficiency than pure CdS and other CdS/Ag3PO4 composites. The superb performances of this composite are attributed to its privileged properties, such as retarded recombination of photoinduced electron/hole pairs and a large specific surface area, making Pt-Ag3PO4/CdS/chitosan a valuable composite that can be deployed for a range of important applications, such as visible light-induced photocatalysis and antibacterial activity.

4.
Photochem Photobiol ; 94(6): 1210-1224, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29968351

RESUMO

New magnetically separable CaFe2 O4 /Ag3 PO4 , MgFe2 O4 /Ag3 PO4 , rGO/CaFe2 O4 /Ag3 PO4 and rGO/MgFe2 O4 /Ag3 PO4 photocatalysts were synthesized by the hydrothermal and ion-exchange deposition method. These four types of photocatalyst were used for degradation of Methylene blue (MB), Methyl orange (MO) and 4-chlorophenol (4-CP) in aqueous solution under visible-light illumination. The optimized photocatalyst, i.e. rGO/CaFe2 O4 /Ag3 PO4 with a mass ratio of (1:3:9) composite not only shows the highest photocatalytic performance for the degradation of MB, MO and 4-CP under visible light irradiation among the other synthesized photocatalysts but also exhibits high reusability and stability for at least five cycles. It was found that the impressive separation of electron-hole pairs as well as presence of rGO sheets which act as a high speed charge transfer were responsible for increasing photocatalytic activity over the optimized photocatalyst under visible-light irradiation. A possible mechanism for the increased photocatalytic activity of the rGO/CaFe2 O4 /Ag3 PO4 with a mass ratio of (1:3:9) composite was discussed in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA