Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioscience ; 74(4): 253-268, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38720908

RESUMO

Managing coastal wetlands is one of the most promising activities to reduce atmospheric greenhouse gases, and it also contributes to meeting the United Nations Sustainable Development Goals. One of the options is through blue carbon projects, in which mangroves, saltmarshes, and seagrass are managed to increase carbon sequestration and reduce greenhouse gas emissions. However, other tidal wetlands align with the characteristics of blue carbon. These wetlands are called tidal freshwater wetlands in the United States, supratidal wetlands in Australia, transitional forests in Southeast Asia, and estuarine forests in South Africa. They have similar or larger potential for atmospheric carbon sequestration and emission reductions than the currently considered blue carbon ecosystems and have been highly exploited. In the present article, we suggest that all wetlands directly or indirectly influenced by tides should be considered blue carbon. Their protection and restoration through carbon offsets could reduce emissions while providing multiple cobenefits, including biodiversity.

2.
Proc Biol Sci ; 290(2010): 20231183, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37909075

RESUMO

Mangrove forests are the dominant vegetation growing on low wooded islands, which occur in the Caribbean, Indian and Pacific Oceans. In the northern Great Barrier Reef, we map remarkable, undocumented mangrove forest extension on 10 low wooded islands in the Howick Group that collectively equates to an area of 667 000 m2 (66.7 ha). We combine extensive field survey with canopy height models derived from RPA imagery and allometric scaling to quantify above ground biomass in both old (pre-1973) and new (post-1973) forest areas. Forest expansion added approximately 10 233 tonnes of new biomass since the early 1970s. We suggest that such substantial expansion of mangrove forest has occurred within a short time span in response to changing environmental controls. These may include sea-level rise, sediment transport and deposition, cyclone impact and the development of associated reef flat sedimentary landforms including unconsolidated and lithified shingle ridges, which influence reef flat hydrodynamics. Our observations highlight the globally dynamic response of mangrove distribution and forest structure to environmental change and provide timely new estimates from understudied reef island settings.


Assuntos
Florestas , Áreas Alagadas , Biomassa , Oceano Pacífico , Região do Caribe
3.
Rapid Commun Mass Spectrom ; 24(20): 2938-42, 2010 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-20872625

RESUMO

Stable isotope techniques in food web studies often focus on organic carbon in food sources which are subsequently assimilated in the tissue of consumer organisms through diet. The presence of non-dietary carbonates in bulk samples can affect their δ(13)C values, altering how their results are interpreted. Acidification of samples is a common practice to eliminate any inorganic carbon present prior to analysis. We examined the effects of pre-analysis acidification on two size fractions of sediment organic matter (SOM) from marine and freshwater wetlands and pure muscle tissue of a common freshwater invertebrate (Cherax destructor). The elemental content and isotopic ratios of carbon and nitrogen were compared between paired samples of acidified and control treatments. Our results showed that acidification does not affect the elemental or isotopic values of freshwater SOM. In the marine environment acidification depleted the δ(13)C and δ(15)N values of the fine fraction of saltmarsh and δ(15)N values of mangrove fine SOM. Whilst acidification did not change the elemental content of invertebrate muscle tissue, the δ(13)C and δ(15)N values were affected. We recommend to researchers considering using acidification techniques on material prepared for stable isotope analysis that a formal assessment of the effect of acidification on their particular sample type should be undertaken. Further detailed investigation to understand the impact of acidification on elemental and isotopic values of organic matter and muscular tissues is required.


Assuntos
Decápodes , Cadeia Alimentar , Sedimentos Geológicos/química , Músculos/química , Animais , Isótopos de Carbono/química , Carbonatos/química , Biologia de Ecossistemas de Água Doce , Concentração de Íons de Hidrogênio , Biologia Marinha , Espectrometria de Massas , Isótopos de Nitrogênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA