Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
4.
J Circadian Rhythms ; 16: 12, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30483349

RESUMO

BACKGROUND: Microdialysis can be used to measure amino acids in the extracellular space in vivo, based on the principle of diffusion. Variations in experimental set-up result in variations in baseline levels of the compounds measured. Variations may also be due to circadian rhythms. METHOD: We systematically searched and mapped the literature on all studies reporting baseline microdialysis measurements of histamine and the amino acids asparagine, aspartate, GABA, glutamate, glutamine, glycine, proline and taurine. We fully reviewed the studies describing circadian rhythms for histamine and the selected amino acids. RESULTS: We retrieved 2331 papers describing baseline measurements of one or more of the compounds of interest. We provide a numerical summary and lists of the publications by compound. We retrieved 11 references describing studies on the circadian rhythms of the compounds of interest. Aspartate, glutamate and histamine are generally higher during the dark than during the light phase in nocturnal rodents. For glutamine, no rhythmicity was observed. For GABA, the results were too inconsistent to generalise. For asparagine, glycine, proline and taurine, insufficient data are available. CONCLUSION: The literature on intracerebral microdialysis measurements of the amino acids is vast, but certain primary studies are still warranted. Future systematic reviews on the individual compounds can shed light on the effects of experimental variations on baseline concentrations.

5.
Immunol Lett ; 223: 53-61, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32360534

RESUMO

Investigation of the cellular metabolic pathways of immune cells, or immunometabolism, is a field of increasing interest. An understanding of immunometabolism provides routes to modifying T cell function for therapeutic purposes. Here, we review immunometabolism with a specific focus on regulatory T cells (Tregs). While T cells are known to switch their metabolic profile from oxidative phosphorylation to aerobic glycolysis upon activation, in vitro-induced Tregs display alternate metabolic characteristics which may be related to their specialised suppressive function. Recent data suggest that the preferential pathways employed by Tregs differ in vivo and ex vivo. Metabolic 'harshness', particularly the deterioration of glycolysis, positively affects Treg differentiation and function, while negatively correlating with Treg clonal expansion and migratory capacity. These context-dependent findings provide new insights into the behaviour of Tregs with implications for both tumour immunology and autoimmunity. This review examines the field in detail, offering an overview of our current understanding of Treg immunometabolism.


Assuntos
Hipóxia/imunologia , Linfócitos T Reguladores/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Autoimunidade , Diferenciação Celular , Humanos , Tolerância Imunológica , Ativação Linfocitária , Redes e Vias Metabólicas , Linfócitos T Reguladores/imunologia
6.
Front Immunol ; 10: 2839, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849995

RESUMO

Regulatory T cells (Treg) are well-known for their immune regulatory potential and are essential for maintaining immune homeostasis. The rationale of Treg-based immunotherapy for treating autoimmunity and transplant rejection is to tip the immune balance of effector T cell-mediated immune activation and Treg-mediated immune inhibition in favor of Treg cells, either through endogenous Treg expansion strategies or adoptive transfer of ex vivo expanded Treg. Compelling evidence indicates that Treg show properties of phenotypic heterogeneity and instability, which has caused considerable debate in the field regarding their correct use. Consequently, for further optimization of Treg-based immunotherapy, it is vital to further our understanding of Treg proliferative, migratory, and suppressive behavior. It is increasingly appreciated that the functional profile of immune cells is highly dependent on their metabolic state. Although the metabolic profiles of effector T cells are progressively understood, little is known on Treg in this respect. The objective of this review is to outline the current knowledge of human Treg metabolic profiles associated with the regulation of Treg functionality. As such information on human Treg is still limited, where information was lacking, we included insightful findings from mouse studies. To assess the available evidence on metabolic pathways involved in Treg functionality, PubMed, and Embase were searched for articles in English indexed before April 28th, 2019 using "regulatory T lymphocyte," "cell metabolism," "cell proliferation," "migration," "suppressor function," and related search terms. Removal of duplicates and search of the references was performed manually. We discerned that while glycolysis fuels the biosynthetic and bioenergetic needs necessary for proliferation and migration of human Treg, suppressive capacity is mainly maintained by oxidative metabolism. Based on the knowledge of metabolic differences between Treg and non-Treg cells, we additionally discuss and propose ways of how human Treg metabolism could be exploited for the betterment of tolerance-inducing therapies.


Assuntos
Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Humanos , Tolerância Imunológica , Redes e Vias Metabólicas
7.
J Leukoc Biol ; 106(1): 11-25, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31169935

RESUMO

Secondary infections are a major complication of sepsis and associated with a compromised immune state, called sepsis-induced immunoparalysis. Molecular mechanisms causing immunoparalysis remain unclear; however, changes in cellular metabolism of leukocytes have been linked to immunoparalysis. We investigated the relation of metabolic changes to antimicrobial monocyte functions in endotoxin-induced immunotolerance, as a model for sepsis-induced immunoparalysis. In this study, immunotolerance was induced in healthy males by intravenous endotoxin (2 ng/kg, derived from Escherichia coli O:113) administration. Before and after induction of immunotolerance, circulating CD14+ monocytes were isolated and assessed for antimicrobial functions, including cytokine production, oxidative burst, and microbial (Candida albicans) killing capacity, as well metabolic responses to ex vivo stimulation. Next, the effects of altered cellular metabolism on monocyte functions were validated in vitro. Ex vivo lipopolysaccharide stimulation induced an extensive rewiring of metabolism in naive monocytes. In contrast, endotoxin-induced immunotolerant monocytes showed no metabolic plasticity, as they were unable to adapt their metabolism or mount cytokine and oxidative responses. Validation experiments showed that modulation of metabolic pathways, affected by immunotolerance, influenced monocyte cytokine production, oxidative burst, and microbial (C. albicans) killing in naive monocytes. Collectively, these data demonstrate that immunotolerant monocytes are characterized by a loss of metabolic plasticity and these metabolic defects impact antimicrobial monocyte immune functions. Further, these findings support that the changed cellular metabolism of immunotolerant monocytes might reveal novel therapeutic targets to reverse sepsis-induced immunoparalysis.


Assuntos
Tolerância Imunológica/efeitos dos fármacos , Monócitos/metabolismo , Explosão Respiratória , Adolescente , Adulto , Candida/imunologia , Citocinas/biossíntese , Glicólise , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Sepse/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA