Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gastroenterology ; 148(3): 616-25, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25479136

RESUMO

BACKGROUND & AIMS: Phosphoinositides (PIs) bind and regulate localization of proteins via a variety of structural motifs. PI 4,5-bisphosphate (PI[4,5]P2) interacts with and modulates the function of several proteins involved in intracellular vesicular membrane trafficking. We investigated interactions between PI(4,5)P2 and hepatitis C virus (HCV) nonstructural protein 5A (NS5A) and effects on the viral life cycle. METHODS: We used a combination of quartz crystal microbalance, circular dichroism, molecular genetics, and immunofluorescence to study specific binding of PI(4,5)P2 by the HCV NS5A protein. We evaluated the effects of PI(4,5)P2 on the function of NS5A by expressing wild-type or mutant forms of Bart79I or FL-J6/JFH-5'C19Rluc2AUbi21 RNA in Huh7 cells. We also studied the effects of strategies designed to inhibit PI(4,5)P2 on HCV replication in these cells. RESULTS: The N-terminal amphipathic helix of NS5A bound specifically to PI(4,5)P2, inducing a conformational change that stabilized the interaction between NS5A and TBC1D20, which is required for HCV replication. A pair of positively charged residues within the amphipathic helix (the basic amino acid PI(4,5)P2 pincer domain) was required for PI(4,5)P2 binding and replication of the HCV-RNA genome. A similar motif was found to be conserved across all HCV isolates, as well as amphipathic helices of many pathogens and apolipoproteins. CONCLUSIONS: PI(4,5)P2 binds to HCV NS5A to promote replication of the viral RNA genome in hepatocytes. Strategies to disrupt this interaction might be developed to inhibit replication of HCV and other viruses.


Assuntos
Genoma Viral , Hepacivirus/genética , Hepatócitos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Sobrevivência Celular , Dicroísmo Circular , Hepacivirus/metabolismo , Humanos , Microscopia de Fluorescência , Estrutura Secundária de Proteína , Técnicas de Microbalança de Cristal de Quartzo , Análise de Sequência de RNA , Proteínas rab1 de Ligação ao GTP/metabolismo
2.
Integr Environ Assess Manag ; 2(2): 105-25, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16646380

RESUMO

Outdoor aquatic ditch mesocosms were treated with a range of pesticides to simulate various spray drift rates resulting from a typical crop protection program used in the cultivation of potatoes in The Netherlands. The main experimental aims of the present study were to provide information on the fate and ecological effects of drift of the pesticides into surface water and to evaluate the effectiveness of drift-reduction measures in mitigating risks. The pesticides selected and the dosage, frequency, and timing of application were based on normal agricultural practices in the potato crop. Applications of prosulfocarb, metribuzin (both herbicides), lambda-cyhalothrin (insecticide), chlorothalonil, and fluazinam (both fungicides) were made in the sequence typical of the spray calendar for potatoes. A total of 15 treatments with the various compounds were made by spray application to the water surface at 0.2%, 1%, and 5% of the recommended label rates. Chemical fate and effects on ecosystem function and structure (phytoplankton, zooplankton, chlorophyll-a, macroinvertebrates, macrophytes, breakdown of plant litter) were investigated. To interpret the observed effects, treatment concentrations were also expressed in toxic units (TU), which describe the relative toxicity of the compounds with standard toxicity test organisms (Daphnia and algae). After treatment, each compound disappeared from the water phase within 2 d, with the exception of prosulfocarb, for which 50% dissipation time (DT50) values ranged between 6 and 7 d. At the 5% treatment level, an exposure peak of 0.9 TUalgae was observed, which resulted in short-term responses of pH, oxygen, and phytoplankton. At the 5% treatment level, exposure concentrations also exceeded 0.1 TUDaphnia, and this resulted in long-term effects on zooplankton and macroinvertebrates, some of which did not fully recover by the end of the present study. At the 1% treatment level, only slight transient effects were observed on a limited number of zooplankton and macro-invertebrate species and on pH. At the 0.2% level, no consistent treatment-related effects were observed. Most of the observed effects were consistent with the results from higher-tier and mesocosm studies with the individual compounds. Multi and repeated stress played a small role within the applied pesticide package, because of rapid dissipation of most substances and the absence of many simultaneous applications. This suggests that risk assessments based on the individual compounds would in this case have been sufficiently protective for their uses in a crop protection program.


Assuntos
Praguicidas/química , Praguicidas/toxicidade , Solanum tuberosum , Poluentes Químicos da Água/análise , Animais , Concentração de Íons de Hidrogênio , Invertebrados/efeitos dos fármacos , Oxigênio/análise , Resíduos de Praguicidas , Plâncton/efeitos dos fármacos , Folhas de Planta , Plantas/efeitos dos fármacos , Fatores de Tempo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA