Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562767

RESUMO

Facial micro expressions are brief, spontaneous, and crucial emotions deep inside the mind, reflecting the actual thoughts for that moment. Humans can cover their emotions on a large scale, but their actual intentions and emotions can be extracted at a micro-level. Micro expressions are organic when compared with macro expressions, posing a challenge to both humans, as well as machines, to identify. In recent years, detection of facial expressions are widely used in commercial complexes, hotels, restaurants, psychology, security, offices, and education institutes. The aim and motivation of this paper are to provide an end-to-end architecture that accurately detects the actual expressions at the micro-scale features. However, the main research is to provide an analysis of the specific parts that are crucial for detecting the micro expressions from a face. Many states of the art approaches have been trained on the micro facial expressions and compared with our proposed Lossless Attention Residual Network (LARNet) approach. However, the main research on this is to provide analysis on the specific parts that are crucial for detecting the micro expressions from a face. Many CNN-based approaches extracts the features at local level which digs much deeper into the face pixels. However, the spatial and temporal information extracted from the face is encoded in LARNet for a feature fusion extraction on specific crucial locations, such as nose, cheeks, mouth, and eyes regions. LARNet outperforms the state-of-the-art methods with a slight margin by accurately detecting facial micro expressions in real-time. Lastly, the proposed LARNet becomes accurate and better by training with more annotated data.


Assuntos
Emoções , Expressão Facial , Atenção , Face , Humanos , Boca
2.
J Digit Imaging ; 29(1): 115-25, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26259521

RESUMO

In computer-aided diagnosis (CAD) of mediolateral oblique (MLO) view of mammogram, the accuracy of tissue segmentation highly depends on the exclusion of pectoral muscle. Robust methods for such exclusions are essential as the normal presence of pectoral muscle can bias the decision of CAD. In this paper, a novel texture gradient-based approach for automatic segmentation of pectoral muscle is proposed. The pectoral edge is initially approximated to a straight line by applying Hough transform on Probable Texture Gradient (PTG) map of the mammogram followed by block averaging with the aid of approximated line. Furthermore, a smooth pectoral muscle curve is achieved with proposed Euclidean Distance Regression (EDR) technique and polynomial modeling. The algorithm is robust to texture and overlapping fibro glandular tissues. The method is validated with 340 MLO views from three databases-including 200 randomly selected scanned film images from miniMIAS, 100 computed radiography images and 40 full-field digital mammogram images. Qualitatively, 96.75 % of the pectoral muscles are segmented with an acceptable pectoral score index. The proposed method not only outperforms state-of-the-art approaches but also accurately quantifies the pectoral edge. Thus, its high accuracy and relatively quick processing time clearly justify its suitability for CAD.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mamografia/métodos , Reconhecimento Automatizado de Padrão/métodos , Músculos Peitorais/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Algoritmos , Bases de Dados Factuais , Feminino , Humanos , Reprodutibilidade dos Testes
3.
Diagnostics (Basel) ; 10(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575475

RESUMO

Pneumonia causes the death of around 700,000 children every year and affects 7% of the global population. Chest X-rays are primarily used for the diagnosis of this disease. However, even for a trained radiologist, it is a challenging task to examine chest X-rays. There is a need to improve the diagnosis accuracy. In this work, an efficient model for the detection of pneumonia trained on digital chest X-ray images is proposed, which could aid the radiologists in their decision making process. A novel approach based on a weighted classifier is introduced, which combines the weighted predictions from the state-of-the-art deep learning models such as ResNet18, Xception, InceptionV3, DenseNet121, and MobileNetV3 in an optimal way. This approach is a supervised learning approach in which the network predicts the result based on the quality of the dataset used. Transfer learning is used to fine-tune the deep learning models to obtain higher training and validation accuracy. Partial data augmentation techniques are employed to increase the training dataset in a balanced way. The proposed weighted classifier is able to outperform all the individual models. Finally, the model is evaluated, not only in terms of test accuracy, but also in the AUC score. The final proposed weighted classifier model is able to achieve a test accuracy of 98.43% and an AUC score of 99.76 on the unseen data from the Guangzhou Women and Children's Medical Center pneumonia dataset. Hence, the proposed model can be used for a quick diagnosis of pneumonia and can aid the radiologists in the diagnosis process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA