Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(38): 13512-13520, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37707358

RESUMO

The stability of thin liquid films on a surface can be controlled by using external stimuli, such as an electric field, temperature, or light, by manipulating the total excess free energy of the system. It has been previously shown that thin lubricating films on slippery surfaces can be destabilized via the spinodal mechanism using an external electric field, which returns to the original stable configuration upon the electric field. However, the role of the frequency of the applied ac electric field is not clear, which is the main topic of study in this report. When an ac electric field of fixed voltage and varying frequency is applied across thin lubricating films of slippery surfaces, a different dewetting behavior is observed. Characteristic length and time scales of dewetting depend strongly on the frequency of the applied voltage, which is primarily due to the change in the dielectric behavior of the lubricating fluid. In addition, the interplay of various time scales involved in the dewetting process also depends on the frequency.

2.
Soft Matter ; 19(6): 1164-1173, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36637154

RESUMO

The static wetting behavior of drops on surfaces with thin lubricating films is very different compared to solid surfaces. Due to the slow dynamics of the wetting ridge, it is challenging to predict the apparent contact angles of such drops. It is hypothesized that for a sinking drop on a lubricated surface, quasi-static wetting morphology can be numerically computed from the knowledge of interfacial energies, lubricant thickness, and drop volume. In this study, we use Surface Evolver to numerically compute the static wetting morphology for the four-phase system using a quasi-static approach with a sinking time similar to the early-intermediate times, and the results agree well with the corresponding experiments. We find that the apparent contact angles depend significantly on the lubricant thickness and substrate wettability compared to other parameters.

3.
Langmuir ; 35(24): 7672-7679, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31117726

RESUMO

The mobility of liquid drops on lubricant-infused slippery surfaces depends strongly on various system parameters, for example, surface energy and roughness of the underlying solid surface and surface tension and viscosity of the test and the lubricating fluids. Here, we investigate lubricant-coated slippery surfaces fabricated on smooth hydrophobic solid surfaces and examine the influence of thickness and viscosity of the lubricating oil on the velocity of aqueous drops. We also investigate the effect of surface tension of the test liquid using a binary mixture of water and ethanol, on the apparent contact angle, which further affects their slip velocity. A theoretical model, based on various dissipative forces acting in different regions of the lubricating oil and a test drop, is also presented, which elucidates the dependence of drop velocity on lubricating oil viscosity and base radius of drops of test liquids.

4.
Langmuir ; 32(23): 5738-43, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27221199

RESUMO

We demonstrate a novel technique to fabricate mechanically tunable slippery surfaces using one-dimensional (anisotropic) elastic wrinkles. Such wrinkles show tunable topography (amplitude) on the application of mechanical strain. Following Nepenthes pitcher plants, lubricating fluid infused solid surfaces show excellent slippery behavior for test liquid drops. Therefore, combining the above two, that is, infusing suitable lubricating fluid on elastic wrinkles, would enable us to fabricate mechanically tunable slippery surfaces. Completely stretched (flat) wrinkles have uniform coating of lubricating fluid, whereas completely relaxed (full amplitude) wrinkles have most of the lubricating oil in the wrinkle grooves. Therefore, water drops on completely stretched surface show excellent slippery behavior, whereas on completely relaxed surface they show reduced slippery behavior. Therefore, continuous variation of wrinkle stretching provides reversibly tunable slippery behavior on such a system. Because the wrinkles are one-dimensional, they show anisotropic tunability of slippery behavior depending upon whether test liquid drops slip parallel or perpendicular to the wrinkles.

5.
Langmuir ; 31(3): 1231-6, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25531036

RESUMO

Liquids show different static wetting morphologies in open triangular grooves depending upon the wedge angle (ψ) of the groove and the liquid contact angle (θ) with the substrate. Switching between different morphologies can be achieved either by varying the contact angle of the liquid or by changing the wedge angle of the groove. In the present work we manipulate the apparent contact angle of a liquid by electrowetting to switch between liquid morphologies, from droplet to filament, to achieve microfluidic transport of the liquid into open triangular grooves. The static length of liquid filaments in grooves is analyzed as a function of applied voltage for different applied ac frequencies. The dynamic advancement of the filament lengths in grooves is analyzed as a function of time for different applied voltages for two different liquids: first with contact angle greater than the wedge angle and second with contact angle smaller than the wedge angle. Later an exact electrical model is derived to explain the liquid transport in triangular grooves actuated by electrowetting which includes the precise geometry of the liquid morphology.

6.
J Colloid Interface Sci ; 607(Pt 1): 530-537, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34509731

RESUMO

HYPOTHESIS: The stability of thin lubricating fluid-coated slippery surfaces depends on the surface energy of the underlying solid surface. High energy solid surfaces coated with thin lubricating oil lead to the dewetting of the oil films upon depositing aqueous drops on them. Hence such surfaces are very suitable to investigate dewetting of thick films (thickness > 500 nm), which otherwise is not possible using a conventional dewetting system. EXPERIMENTS: Lubricating films of different thicknesses are coated on hydrophilic solid surfaces, and glycerol drops are deposited on them. Fluorescence imaging of lubricating films and macroscopic wetting behavior of glycerol drops are analyzed to understand the dewetting phenomenon. FINDINGS: Underneath lubricating films undergo initial thinning and subsequently dewet. The dewetting dynamics during hole nucleation and growth and the final pattern of the dewetted oil droplets depend strongly on the thickness of the lubricating films. Ultrathin films dewet spontaneously via homogeneous nucleation, whereas thicker films dewet via heterogeneous nucleation. During dewetting, the apparent contact angle and radius of glycerol drops follow universal scaling behavior.

7.
J Colloid Interface Sci ; 569: 244-253, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32114103

RESUMO

HYPOTHESIS: Lubricating fluid coated slippery (LCS) surfaces offer a new scope to study the evaporation of sessile drops due to pinning free motion of the three-phase contact line (TPCL). This work aims to experimentally demonstrate the different evaporation behavior of water and binary mixture drops on dry and LCS surfaces. EXPERIMENTS: Evaporation study on dry and LCS surfaces is performed by capturing top and side views of evaporating drops to extract various parameters which are subsequently used to distinguish between different evaporation modes. FINDINGS: Formation of a wetting ridge and cloaking of water drops on LCS surfaces affect the overall evaporation process and make it different compared to that on dry surfaces. Evaporation dynamics on LCS surfaces reveal that wetting ridge height of an evaporating drop varies non-monotonically compared to the drop height. Diffusion based theoretical model is used to predict the role of various system parameters on the evaporation process. In contrast to dry solid surfaces, where coffee ring effects are commonly observed towards the end of the evaporation process, LCS surfaces show the formation of a wrinkle like pattern of the lubricating fluid which disappears at long times.

8.
Langmuir ; 25(21): 12794-9, 2009 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-19572521

RESUMO

On soft poly(dimethylsiloxane) (PDMS) substrates with 1D sinusoidal wrinkle patterns, we study the anisotropic wetting behavior and fluidic transport as a function of surface energy and groove geometry. On grooved substrates with a contact angle greater than 90 degrees , liquids form dropletlike morphology, and its contact angle in the direction perpendicular to the grooves is larger than that parallel to the grooves. This wetting anisotropy, for a fixed Young's contact angle, is found to increase when the grooves become deeper. On substrates with a contact angle smaller than 90 degrees and deep grooves (aspect ratio >/=0.3), liquids form filament-like morphology. When the groove depth is further increased by compressing the PDMS film beyond a threshold value, which depends on the surface wettability, fluid starts imbibing the grooves spontaneously. The dynamics of the liquid imbibition of grooves is studied, and a square-law dependence between the length of the liquid filament and time is found, which obeys Washburn's law. Using a simple model based on force balance, we find that the capillary force is mainly responsible for groove filling in sinusoidal grooves.

9.
RSC Adv ; 8(24): 13253-13258, 2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35542509

RESUMO

Superoleophobic surfaces exhibiting tunable wettability are prepared by the combination of simple spray coating of Ultra Violet (UV) responsive titania nanoparticles and a low surface energy coating of a self-assembled monolayer (SAM) of 1H,1H,2H,2H-perflurodecyltrichlorosilane (PFDTS). Spray coating creates random micron-sized roughness with reentrant geometry, a necessary requirement for the superoleophobic surface, and a porous network at the nanometer size level, confirmed by the field emission scanning electron microscope (FE-SEM) images. By employing the rough surface and a low surface energy monolayer, the substrates possess superhydrophobicity with a water (γ = 72 mN m-1) contact angle of 163° and superoleophobicity with a decane (γ = 23 mN m-1) contact angle of 144°. Wettability of these surfaces is completely reversed to the superoleophilic state upon 6 h of UV irradiation. A quantitative X-ray photoelectron spectroscopy (XPS) analysis has confirmed the mechanism of decomposition of PFDTS molecules on the superoleophilic surfaces via interaction with the defect Ti3+ states of titania upon UV exposure. Furthermore, the superoleophobicity is restored to complete the transition cycle by changing the surface chemistry of the UV exposed surface via annealing and regrafting of the PFDTS monolayer.

10.
Sci Rep ; 6: 35524, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27752098

RESUMO

Alloys, specifically steel, are considered as the workhorse of our society and are inimitable engineering materials in the field of infrastructure, industry and possesses significant applications in our daily life. However, creating a robust synthetic metallic surface that repels various liquids has remained extremely challenging. The wettability of a solid surface is known to be governed by its geometric nano-/micro structure and the chemical composition. Here, we are demonstrating a facile and economical way to generate copper oxide micro-nano structures with spherical (0D), needle (1D) and hierarchical cauliflower (3D) morphologies on galvanized steel substrates using a simple chemical bath deposition method. These nano/micro textured steel surfaces, on subsequent coating of a low surface energy material display excellent superhydrophobic, superoleophobic and slippery behavior. Polydimethylsiloxane coated textured surfaces illustrate superhydrophobicity with water contact angle about 160°(2) and critical sliding angle ~2°. When functionalized with low-surface energy perfluoroalkylsilane, these surfaces display high repellency for low surface tension oils as well as hydrocarbons. Among them, the hierarchical cauliflower morphology exhibits re-entrant structure thereby showing the best superoleophobicity with contact angle 149° for dodecane. Once infused with a lubricant like silicone oil, they show excellent slippery behavior with low contact angle hysteresis (~ 2°) for water drops.

11.
J Phys Condens Matter ; 23(18): 184108, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21508471

RESUMO

When exposed to a partially wetting liquid, many natural and artificial surfaces equipped with complex topographies display a rich variety of liquid interfacial morphologies. In the present article, we focus on a few simple paradigmatic surface topographies and elaborate on the statics and dynamics of the resulting wetting morphologies. It is demonstrated that the spectrum of wetting morphologies increases with increasing complexity of the groove structure. On elastically deformable substrates, additional structures in the liquid morphologies can be observed, which are caused by deformations of the groove geometry in the presence of capillary forces. The emergence of certain liquid morphologies in grooves can be actively controlled by changes in wettability and geometry. For electrically conducting solid substrates, the apparent contact angle can be varied by electrowetting. This allows, depending on groove geometry, a reversible or irreversible transport of liquid along surface grooves. In the case of irreversible liquid transport in triangular grooves, the dynamics of the emerging instability is sensitive to the apparent hydrodynamic slip at the substrate. On elastic substrates, the geometry can be varied in a straightforward manner by stretching or relaxing the sample. The imbibition velocity in deformable grooves is significantly reduced compared to solid grooves, which is a result of the microscopic deformation of the elastic groove material close to the three phase contact line.


Assuntos
Soluções/química , Biofísica/métodos , Elasticidade , Eletroquímica/métodos , Teste de Materiais , Microscopia de Força Atômica/métodos , Modelos Estatísticos , Poliestirenos/química , Propriedades de Superfície , Molhabilidade
12.
Langmuir ; 23(24): 12138-41, 2007 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-17960943

RESUMO

The dewetting of liquid filaments in linear grooves of a triangular cross section is studied experimentally and theoretically. Homogeneous filaments of glassy polystyrene (PS) are prepared in triangular grooves in a nonequilibrium state. At elevated temperatures, the molten PS restores its material contact angle with the substrate. Liquid filaments with a convex liquid-vapor interface decay into isolated droplets with a characteristic spacing depending on the wedge geometry, wettability, and filament width. This instability is driven by the interplay of local filament width and Laplace pressure and constitutes a wide class of 1D instabilities that also include the Rayleigh-Plateau instability as a special case. Our results show an accurately exponential buildup of the instability, suggesting that fluctuations have a minor influence in our system.

13.
Langmuir ; 23(26): 12997-3006, 2007 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18001065

RESUMO

The morphology of liquids confined to linear micrometer-sized grooves of triangular and rectangular cross section is studied for different substrate wettabilities. Depending on the wettability and exact geometry, either droplike morphologies or elongated liquid filaments represent the generic equilibrium structures on the substrate. Upon changing the apparent contact angle of aqueous drops by electrowetting, we are able to trigger the transition between elongated filaments and droplets. In the case of rectangular grooves, this transition allows us to advance liquid reversibly into the grooves while crossing a certain threshold contact angle. In triangular grooves, however, these elongated filaments undergo a dynamic instability when the contact angle returns to a value above the filling threshold. The different filling and drainage behavior is explained by specific aspects of the triangular and rectangular groove geometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA