Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 12(5): 713-719, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34055216

RESUMO

We report the first small molecule peptides based on the N-terminal sequence of heat shock protein 27 (Hsp27, gene HSPB1) that demonstrates chaperone-like activity. The peptide, comprising the SWDPF sequence located at Hsp27's amino (N)-terminal domain, directly regulates protein aggregation events, maintaining the disaggregated state of the model protein, citrate synthase. While traditional inhibitors of protein aggregation act via regulation of a protein that facilitates aggregation or disaggregation, our molecules are the first small peptides between 5 and 8 amino acids in length that are based on the N-terminus of Hsp27 and directly control protein aggregation. The presented strategy showcases a new approach for developing small peptides that control protein aggregation in proteins with high aggregate levels, making them a useful approach in developing new drugs.

2.
ACS Med Chem Lett ; 9(2): 73-77, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30555625

RESUMO

Herein, we describe the synthesis and structure-activity relationships of cyclic peptides designed to target heat shock protein 90 (Hsp90). Generating 19 compounds and evaluating their binding affinity reveals that increasing electrostatic interactions allows the compounds to bind more effectively with Hsp90 compared to the lead structure. Exchanging specific residues for lysine improves binding affinity for Hsp90, indicating some residues are not critical for interacting with the target, whereas others are essential. Replacing l- for d-amino acids produced compounds with decreased binding affinity compared to the parent structure, confirming the importance of conformation and identifying key residues most important for binding. Thus, a specific conformation and electrostatic interactions are required in order for these inhibitors to bind to Hsp90.

3.
ChemMedChem ; 11(8): 881-92, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26805515

RESUMO

Macrocycles have several advantages over small-molecule drugs when it comes to addressing specific protein-protein interactions as therapeutic targets. Herein we report the synthesis of seven new cyclic peptide molecules and their biological activity. These macrocycles were designed to understand how moving an N-methyl moiety around the peptide backbone impacts biological activity. Because the lead non-methylated structure inhibits the oncogenic regulator heat-shock protein 90 (Hsp90), two of the most potent analogues were evaluated for their Hsp90 inhibitory activity. We show that incorporating an N-methyl moiety controls the conformation of the macrocycle, which dramatically impacts cytotoxicity and binding affinity for Hsp90. Thus, the placement of an N-methylated amino acid within a macrocycle generates an unpredictable change to the compound's conformation and hence biological activity.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Dose-Resposta a Droga , Desenho de Fármacos , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Metilação , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA