Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurol Sci ; 44(6): 1905-1915, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36745300

RESUMO

BACKGROUND: Neuromyelitis optica spectrum disorder (NMOSD) is a progressive demyelinating disease of the central nervous system that has overlapping symptoms with multiple sclerosis (MS) but differs from it in a variety of ways. Previous studies have reported conflicting results trying to estimate the number of individuals affected by them which is why we designed this systematic review and meta-analysis to estimate the worldwide prevalence and incidence of NMOSD/NMO based on current evidence. METHODS: We searched PubMed, Scopus, EMBASE, Web of Science, and gray literature including references from the identified studies, review studies, and conference abstracts which were published up to February 1, 2022. We used all MeSH terms pertaining to "NMOSD," "NMO," and all the terms on "prevalence," "incidence," and "epidemiology" to identify the search components. Pooled effect sizes were measured using random-effect model by DerSimonian-Laird. RESULTS: The prevalence and incidence rates of NMOSD/NMO ranged from 0.07 to 10 and 0.029 to 0.880 per 100,000 population, respectively. The overall pooled prevalence of NMO per 100,000 population was 1.54 (I2: 98.4%, 95% CI: 1.13-1.96, P< 0.001) based on the 2006 criteria, 1.51 (I2: 99.4%, 95% CI: 1.21-1.81, P < 0.001) based on the 2015 criteria and 2.16 (I2: 89.4%, 95% CI: 1.46-2.86, P < 0.001) based on the 2006/2015 criteria. The overall annual incidence of NMO per 100,000 population was 0.155 (I2: 95%, 95% CI: 0.115-0.195, P < 0.001) based on the 2006 criteria and 0.278 (I2: 100%, 95% CI: 0.135-0.420, P < 0.001) based on the 2015 criteria. The prevalence rates were highest in French West Indies and South Korea, and lowest in Cuba and Australia, based on the 2006 and 2015 criteria, respectively. Also, the highest annual incidence rates were obtained for Sweden and Slovak republic and the lowest for Cuba and Australia based on the 2006 and 2015 criteria, respectively. All estimated rates were higher among females compared to males. CONCLUSION: Although rare, NMOSD/NMO impact affected individuals in devastating ways. Several large-scale prospective studies are required to reach a comprehension of the epidemiological aspects of these notorious demyelinating conditions.


Assuntos
Esclerose Múltipla , Neuromielite Óptica , Masculino , Feminino , Humanos , Neuromielite Óptica/epidemiologia , Neuromielite Óptica/diagnóstico , Prevalência , Esclerose Múltipla/epidemiologia , Sistema Nervoso Central , Incidência
2.
Nanomedicine ; 32: 102331, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33181272

RESUMO

AgNPs@Chitosan and Co3O4-NPs@Chitosan were fabricated with Salvia hispanica. Results showed MZI values of 5 and 30 mm for Co3O4-NPs- and AgNPs@Chitosan against S. aureus, and 15 and 21 mm for Co3O4-NPs- and AgNPs@Chitosan against E. coli (24 h, 20 µg/mL), respectively. MTT assays showed up to 80% and 90%, 71% and 75%, and 91% and 94% mammalian cell viability for the green synthesized, chemically synthesized AgNPs and green synthesized AgNPs@Chitosan for HEK-293 and PC12 cells, respectively, and 70% and 71%, 59% and 62%, and 88% and 73% for the related Co3O4-NPs (24 h, 20 µg/mL). The photocatalytic activities showed dye degradation after 135 and 105 min for AgNPs@Chitosan and Co3O4-NPs@Chitosan, respectively. FESEM results showed differences in particle sizes (32 ±â€¯3.0 nm for the AgNPs and 41 ±â€¯3.0 nm for the Co3O4NPs) but AFM results showed lower roughness of the AgNPs@Chitosan (7.639 ±â€¯0.85 nm) compared to Co3O4NPs@Chitosan (9.218 ±â€¯0.93 nm), which resulted in potential biomedical applications.


Assuntos
Tecnologia Biomédica , Quitosana/química , Cobalto/química , Química Verde , Luz , Nanopartículas Metálicas/química , Óxidos/química , Prata/química , Animais , Antibacterianos/farmacologia , Catálise , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Concentração Inibidora 50 , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Células PC12 , Ratos , Salvia hispanica/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X
3.
Nanotechnology ; 31(42): 425101, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32604076

RESUMO

This study, for the first time, reports the synthesis of CuO- and Cu2O nanoparticles (NPs) using the Salvia hispanica extract by a high-gravity technique. The original green synthesis procedure led to the formation of nanoparticles with promising catalytic and biological properties. The synthesized nanoparticles were fully characterized and their catalytic activity was evaluated through a typical Azide-Alkyne Cycloaddition (AAC) reaction. The potential antibacterial activity against gram positive (S. aureus) and gram negative (E. coli) bacteria were investigated. It was shown that the antibacterial properties were independent of the NP morphology as well as of the texture of the synthesis media. As a result, the presently synthesized nanoparticles showed very good photocatalytic and catalytic activities in comparison with the literature. From a biological perspective, they showed lower cytotoxicity in comparison with the literature, and also showed higher antioxidant and antibacterial activities. Thus, these present green CuO and Cu2O nanoparticles deserve further attention to improve numerous medical applications.

4.
Nanomedicine ; 30: 102297, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32931927

RESUMO

This study investigated the synthesis of Pd nanoparticles (NPs) using a high-gravity technique mediated by Salvia hispanica leaf extracts. Biological assays confirmed their antibacterial activity against gram positive (S. aureus) and gram negative (E. coli) bacteria with significant antioxidant activity in comparison with the standards as well as low cellular toxicity on PC12 and HEK293 cell lines. To the best of our knowledge, this study can be considered as the first investigation of Pd-NPs synthesized by Salvia hispanica leaf extracts assisted by a high-gravity technique. In addition, the mentioned green synthesis procedure led to the formation of nanoparticles with considerable antibacterial properties independent of the morphology and texture of the green media of these nanoparticles. Considering the increasing rate of antimicrobial resistant bacteria deaths worldwide, this study introduces a novel green synthesis method and non-antibiotic nanoparticle which should be studied for a wide range of medical applications.


Assuntos
Gravitação , Química Verde , Nanopartículas Metálicas/química , Nanomedicina , Paládio/química , Animais , Escherichia coli/efeitos dos fármacos , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Células PC12 , Extratos Vegetais/farmacologia , Ratos , Salvia/química , Staphylococcus aureus/efeitos dos fármacos
5.
Iran J Med Sci ; 43(6): 587-595, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30510335

RESUMO

BACKGROUND: Remote ischemic preconditioning (RIPC) protects other organs from subsequent lethal ischemic injury, but uncertainty remains. We investigated if RIPC could prevent acute kidney injury (AKI) in patients undergoing coronary artery bypass graft (CABG) surgery. METHODS: This parallel-group, double-blind, randomized, controlled trial was done on adults undergoing elective or urgent on-pump CABG surgery from 2013 to 2017 in Shiraz, Iran. Patients were allocated to RIPC or control groups through permuted blocking. The patients in the RIPC group received three cycles of 5 min ischemia and 5 min reperfusion in the upper arm after induction of anesthesia. We placed an uninflated cuff on the arm for 30 min in the control group. The study primary endpoint was an incidence of AKI. Secondary endpoints included short-term clinical outcomes. We compared categorical and continuous variables using Pearson χ2 and unpaired t tests, respectively. P<0.05 was considered significant. RESULTS: of the 180 patients randomized to RIPC (n=90) and control (n=90) groups, 87 patients in the RIPC and 90 patients in the control group were included in the analysis. There was no significant difference in the incidence of AKI between the groups (38 patients [43.7%] in the RIPC group and 41 patients [45.6%] in the control group; relative risk, 0.96; 95% confidence interval, 0.69 to 1.33; P=0.80). No significant differences were seen regarding secondary endpoints such as postoperative liver function, atrial fibrillation, and inpatient mortality. CONCLUSION: RIPC did not reduce the incidence of AKI, neither did it improve short-term clinical outcomes in patients undergoing on-pump CABG surgery. Trial Registration Number: IRCT2017110537254N1.

6.
PET Clin ; 18(4): 557-566, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37369615

RESUMO

Many novel PET radiotracers have demonstrated potential use in breast cancer. Although not currently approved for clinical use in the breast cancer population, these innovative imaging agents may one day play a role in the diagnosis, staging, management, and even treatment of breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Compostos Radiofarmacêuticos , Tomografia por Emissão de Pósitrons/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos
7.
Neurooncol Adv ; 5(1): vdad119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841693

RESUMO

With medical software platforms moving to cloud environments with scalable storage and computing, the translation of predictive artificial intelligence (AI) models to aid in clinical decision-making and facilitate personalized medicine for cancer patients is becoming a reality. Medical imaging, namely radiologic and histologic images, has immense analytical potential in neuro-oncology, and models utilizing integrated radiomic and pathomic data may yield a synergistic effect and provide a new modality for precision medicine. At the same time, the ability to harness multi-modal data is met with challenges in aggregating data across medical departments and institutions, as well as significant complexity in modeling the phenotypic and genotypic heterogeneity of pediatric brain tumors. In this paper, we review recent pathomic and integrated pathomic, radiomic, and genomic studies with clinical applications. We discuss current challenges limiting translational research on pediatric brain tumors and outline technical and analytical solutions. Overall, we propose that to empower the potential residing in radio-pathomics, systemic changes in cross-discipline data management and end-to-end software platforms to handle multi-modal data sets are needed, in addition to embracing modern AI-powered approaches. These changes can improve the performance of predictive models, and ultimately the ability to advance brain cancer treatments and patient outcomes through the development of such models.

8.
Sci Rep ; 12(1): 9461, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676410

RESUMO

Doxorubicin (DOX) is a potent anti-cancer agent and there have been attempts in developing nanostructures for its delivery to tumor cells. The nanoparticles promote cytotoxicity of DOX against tumor cells and in turn, they reduce adverse impacts on normal cells. The safety profile of nanostructures is an important topic and recently, the green synthesis of nanoparticles has obtained much attention for the preparation of biocompatible carriers. In the present study, we prepared layered double hydroxide (LDH) nanostructures for doxorubicin (DOX) delivery. The Cu-Al LDH nanoparticles were synthesized by combining Cu(NO3)2·3H2O and Al(NO3)3·9H2O, and then, autoclave at 110. The green modification of LDH nanoparticles with Plantago ovata (PO) was performed and finally, DOX was loaded onto nanostructures. The FTIR, XRD, and FESEM were employed for the characterization of LDH nanoparticles, confirming their proper synthesis. The drug release study revealed the pH-sensitive release of DOX (highest release at pH 5.5) and prolonged DOX release due to PO modification. Furthermore, MTT assay revealed improved biocompatibility of Cu-Al LDH nanostructures upon PO modification and showed controlled and low cytotoxicity towards a wide range of cell lines. The CLSM demonstrated cellular uptake of nanoparticles, both in the HEK-293 and MCF-7 cell lines; however, the results were showed promising cellular internalizations to the HEK-293 rather than MCF-7 cells. The in vivo experiment highlighted the normal histopathological structure of kidneys and no side effects of nanoparticles, further confirming their safety profile and potential as promising nano-scale delivery systems. Finally, antibacterial test revealed toxicity of PO-modified Cu-Al LDH nanoparticles against Gram-positive and -negative bacteria.


Assuntos
Doxorrubicina , Nanopartículas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Hidróxidos/química , Células MCF-7 , Nanopartículas/química
9.
Chemosphere ; 299: 134436, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35358565

RESUMO

The treatment of water contaminated by bacteria is becoming a necessity. The nanomaterials possessing both intrinsic antibacterial properties and photocatalytic activity are excellent candidates for water disinfection. The powdered form of nanomaterials can be aggregated while embedding the nanomaterials into the NFs can overcome the limitation and enhance the photocatalytic activity and transition from UV-light to visiblelight. Here, graphene oxide (GO) was synthesized, grafted to chitosan, and decorated with silver nanoparticles (Ag NPs) to produce Ag-decorated reduced GO-graft-Chitosan (AGC) NPs. The blends of polyacrylonitrile (PAN) and AGC NPs were prepared in various concentrations of 0.5 wt%, 1.0 wt%, 5.0 wt%, and 10.0 wt% and used to fabricate the electrospun composite NFs. FTIR/ATR, UV-Vis, Raman, XRD, and SEM/EDAX analyses confirmed the successful preparation of the NPs and NFs. The cytotoxicity and antibacterial activity of the composite NFs were received in the order of composite NFs 10.0 wt%˃ 5.0 wt%˃ 1.0 wt%˃ 0.5 wt% in both conditions with/without light irradiation. Their cytotoxicity and antibacterial activity were more under light irradiation compared to the dark. The composite NFs (5.0 wt%) were distinguished as the optimum NFs with cell viability of 80% within 24 h and 60% within 48 h on L929 cells and inhibition zone diameter (IZD) of 12 mm for E. coli and 13 mm for S. aureus after 24 h under the light irradiation. The optimum composite NFs showed thermal stability up to 180 °C and tensile strength of 1.11 MPa with 21.71% elongation at break.


Assuntos
Quitosana , Nanopartículas Metálicas , Nanofibras , Antibacterianos/farmacologia , Quitosana/farmacologia , Escherichia coli , Grafite , Luz , Prata/farmacologia , Staphylococcus aureus , Água
10.
Hum Fertil (Camb) ; : 1-5, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35266418

RESUMO

The relationship between infertility and varicocele is still a controversial topic. This study aimed to find the association between the venous blood gas (VBG) pattern of the spermatic veins and peripheral veins with varicocele grade and spermogram variables in infertile patients. A total of 47 patients with a varicocele were enrolled in this study. Blood samples were drawn simultaneously from the spermatic vein and a peripheral vein. The pH, partial pressure of oxygen, the partial pressure of carbon dioxide, oxygen saturation, and bicarbonate values of these samples were analysed. The mean age of participants was 30.48 ± 6.08. The mean volume of semen was 3.92 ± 1.57 mL, and the mean semen pH was 7.88 ± 0.22. The pH was higher (p < 0.01) in the spermatic vein compared with the peripheral vein. However, level of other parameters including pO2 (p = 0.662), pCO2 (p < 0.001), HCO3 concentration of serum (p < 0.01), and base excess (p = 0.172) were lower in the spermatic vein in comparison with the peripheral vein. Correlations between VBGs determinants of the varicocele patients' spermatic vein and sperm morphology and motility were insignificant. In conclusion, although the clinical significance of VBGs is evident, there are limited studies that investigated the VBGs in varicocele patients. We should consider that the deviation in blood gases may be the missing piece in the puzzle to understand the pathophysiology of varicocele. By knowing the pathophysiology more precisely, we can better decide the ideal treatment option for the patients.

11.
Chemosphere ; 306: 135578, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35798154

RESUMO

Overexpression of proteins/antigens and other gene-related sequences in the bodies could lead to significant mutations and refractory diseases. Detection and identification of assorted trace concentrations of such proteins/antigens and/or gene-related sequences remain challenging, affecting different pathogens and making viruses stronger. Correspondingly, coronavirus (SARS-CoV-2) mutations/alterations and spread could lead to overexpression of ssDNA and the related antigens in the population and brisk activity in gene-editing technologies in the treatment/detection may lead to the presence of pCRISPR in the blood. Therefore, the detection and evaluation of their trace concentrations are of critical importance. CaZnO-based nanoghosts (NGs) were synthesized with the assistance of a high-gravity technique at a 1,800 MHz field, capitalizing on the use of Rosmarinus officinalis leaf extract as the templating agent. A complete chemical, physical and biological investigation revealed that the synthesized NGs presented similar morphological features to the mesenchymal stem cells (MSCs), resulting in excellent biocompatibility, interaction with ssDNA- and/or pCRISPR-surface, through various chemical and physical mechanisms. This comprise the unprecedented synthesis of a fully inorganic nanostructure with behavior that is similar to MSCs. Furthermore, the endowed exceptional ability of inorganic NGs for detective sensing/folding of ssDNA and pCRISPR and recombinant SARS-CoV-2 spike antigen (RSCSA), along with in-situ hydrogen peroxide detection on the HEK-293 and HeLa cell lines, was discerned. On average, they displayed a high drug loading capacity of 55%, and the acceptable internalizations inside the HT-29 cell lines affirmed the anticipated MSCs-like behavior of these inorganic-NGs.


Assuntos
DNA de Cadeia Simples , Doxorrubicina , Sistemas de Liberação de Fármacos por Nanopartículas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Cálcio , DNA de Cadeia Simples/análise , Doxorrubicina/administração & dosagem , Células HEK293 , Células HeLa , Humanos , Glicoproteína da Espícula de Coronavírus/análise , Glicoproteína da Espícula de Coronavírus/genética , Óxido de Zinco
12.
J Nanostructure Chem ; 12(5): 919-932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34580605

RESUMO

There have been numerous advancements in the early diagnosis, detection, and treatment of genetic diseases. In this regard, CRISPR technology is promising to treat some types of genetic issues. In this study, the relationship between calcium (due to its considerable physicochemical properties) and chitosan (as a natural linear polysaccharide) was investigated and optimized for pCRISPR delivery. To achieve this, different forms of calcium, such as calcium nanoparticles (CaNPs), calcium phosphate (CaP), a binary blend of calcium and chitosan including CaNPs/Chitosan and CaP/Chitosan, as well as their tertiary blend including CaNPs-CaP/Chitosan, were prepared via both routine and green procedures using Salvia hispanica to reduce toxicity and increase nanoparticle stability (with a yield of 85%). Such materials were also applied to the human embryonic kidney (HEK-293) cell line for pCRISPR delivery. The results were optimized using different characterization techniques demonstrating acceptable binding with DNA (for both CaNPs/Chitosan and CaNPs-CaP/Chitosan) significantly enhancing green fluorescent protein (EGFP) (about 25% for CaP/Chitosan and more than 14% for CaNPs-CaP/Chitosan). Supplementary Information: The online version contains supplementary material available at 10.1007/s40097-021-00446-1.

13.
J Hazard Mater ; 423(Pt B): 127130, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34530276

RESUMO

Green biomaterials play a crucial role in the diagnosis and treatment of diseases as well as health-related problem-solving. Typically, biocompatibility, biodegradability, and mechanical strength are requirements centered on biomaterial engineering. However, in-hospital therapeutics require an elaborated synthesis of hybrid and complex nanomaterials capable of mimicking cellular behavior. Accumulation of hazardous cations like K+ in the inner and middle ear may permanently damage the ear system. We synthesized nanoplatforms based on Allium noeanum to take the first steps in developing biological porous nanomembranes for hazardous cation detection in biological media. The 1,1,1-tris[[(2'-benzyl-amino-formyl)phenoxy]methyl]ethane (A), 4-amino-benzo-hydrazide (B), and 4-(2-(4-(3-carboxy-propan-amido)benzoyl)hydrazineyl)-4-oxobutanoic acid (B1) were synthesized to obtain green ligands based on 4-X-N-(…(Y(hydrazine-1-carbonyl)phenyl)benzamide, with X denoting fluoro (B2), methoxy (B3), nitro (B4), and phenyl-sulfonyl (B5) substitutes. The chemical structure of ligand-decorated adenosine triphosphate (ATP) molecules (S-ATP) was characterized by FTIR, XRD, AFM, FESEM, and TEM techniques. The cytotoxicity of the porous membrane was patterned by applying different cell lines, including HEK-293, PC12, MCF-7, HeLa, HepG2, and HT-29, to disclose their biological behavior. The morphology of cultured cells was monitored by confocal laser scanning microscopy. The sensitivity of S-ATP to different cations of Na+, Mg2+, K+, Ba2+, Zn2+, and Cd2+ was evaluated by inductively coupled plasma atomic emission spectroscopy (ICP-AES) in terms of extraction efficiency (η). For pH of 5.5, the η of A-based S-ATP followed the order Na+ (63.3%) > Mg2+ (62.1%) > Ba2+ (7.6%) > Ca2+ (5.5%); while for pH of 7.4, Na+ (37.0%) > Ca2+ (33.1%) > K+ (25.7%). The heat map of MTT and dose-dependent evaluations unveiled acceptable cell viability of more than 90%. The proposed green porous nanomembranes would pave the way to use multifunctional green porous nanomembranes in biological membranes.


Assuntos
Benzamidas , Sódio , Cátions , Células HEK293 , Humanos , Porosidade
14.
Sci Rep ; 12(1): 15351, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097028

RESUMO

Nanotechnology is one of the most impressive sciences in the twenty-first century. Not surprisingly, nanoparticles/nanomaterials have been widely deployed given their multifunctional attributes and ease of preparation via environmentally friendly, cost-effective, and simple methods. Although there are assorted optimized preparative methods for synthesizing the nanoparticles, the main challenge is to find a comprehensive method that has multifaceted properties. The goal of this study has been to synthesize aminated (nano)particles via the Rosmarinus officinalis leaf extract-mediated copper oxide; this modification leads to the preparation of (nano)particles with promising biological and photocatalytic applications. The synthesized NPs have been fully characterized, and biological activity was evaluated in antibacterial assessment against Bacillus cereus as a model Gram-positive and Pseudomonas aeruginosa as a model Gram-negative bacterium. The bio-synthesized copper oxide (nano)particles were screened by MTT assay by applying the HEK-293 cell line. The aminated (nano)particles have shown lower cytotoxicity (~ 21%), higher (~ 50%) antibacterial activity, and a considerable increase in zeta potential value (~ + 13.4 mV). The prepared (nano)particles also revealed considerable photocatalytic activity compared to other studies wherein the dye degradation process attained 97.4% promising efficiency in only 80 min and just 7% degradation after 80 min under dark conditions. The biosynthesized copper oxide (CuO) (nano)particle's biomedical investigation underscores an eco-friendly synthesis of (nano)particles, their noticeable stability in the green reaction media, and impressive biological activity.


Assuntos
Cobre , Nanopartículas Metálicas , Aminação , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bioengenharia , Cobre/farmacologia , Células HEK293 , Humanos , Óxidos , Porosidade
15.
Sci Rep ; 12(1): 12105, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840687

RESUMO

The aim of this work was to provide a novel approach to designing and synthesizing a nanocomposite with significant biocompatibility, biodegradability, and stability in biological microenvironments. Hence, the porous ultra-low-density materials, metal-organic frameworks (MOFs), have been considered and the MIL-125(Ti) has been chosen due to its distinctive characteristics such as great biocompatibility and good biodegradability immobilized on the surface of the reduced graphene oxide (rGO). Based on the results, the presence of transition metal complexes next to the drug not only can reinforce the stability of the drug on the structure by preparing π-π interaction between ligands and the drug but also can enhance the efficiency of the drug by preventing the spontaneous release. The effect of utilizing transition metal complex beside drug (Doxorubicin (DOX)) on the drug loading, drug release, and antibacterial activity of prepared nanocomposites on the P. aeruginosa and S. aureus as a model bacterium has been investigated and the results revealed that this theory leads to increasing about 200% in antibacterial activity. In addition, uptake, the release of the drug, and relative cell viabilities (in vitro and in vivo) of prepared nanomaterials and biomaterials have been discussed. Based on collected data, the median size of prepared nanocomposites was 156.2 nm, and their biological stability in PBS and DMEM + 10% FBS was screened and revealed that after 2.880 min, the nanocomposite's size reached 242.3 and 516 nm respectively. The MTT results demonstrated that immobilizing PdL beside DOX leads to an increase of more than 15% in the cell viability. It is noticeable that the AST:ALT result of prepared nanocomposite was under 1.5.


Assuntos
Nanocompostos , Paládio , Antibacterianos/química , Antibacterianos/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Nanocompostos/química , Paládio/farmacologia , Pseudomonas aeruginosa , Staphylococcus aureus
16.
J Educ Health Promot ; 10: 98, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084845

RESUMO

BACKGROUND: In recent years, to achieve the fundamental goal of educating meta-competent future medical doctors, varieties of educational methods have been proposed in all medical schools. In Shiraz Medical School, we implemented an extracurricular theme focusing mostly on medical education's psychosocial aspect. This study aims to discuss the implementation and evaluation of this extracurricular theme. MATERIALS AND METHODS: The present study is a descriptive-analytic one; we included all undergraduate medical students in basic sciences courses who started medical education in 2014 and 2015 in Shiraz Medical School. The evaluation tools were questionnaires designed in different formats and handed out to medical students before and after the workshops. Data were analyzed by paired sample t-test in SPSS Software Version 23. RESULTS: Students' satisfaction was more than 60% in all items of all workshops, except in some items of studying and learning methods and research methods workshops, which were lower than 60%. Students' knowledge about all aspects of communication skills, stress management, critical thinking, studying and learning methods, and research methods workshops improved significantly after participation in these workshops. CONCLUSIONS: Medical students can become meta-competent future medical doctors. They can reach all of the learning outcomes described in the three-circle model of learning. This goal cannot be achieved by implementing a medical curriculum which only contains medical literature. Some extracurricular issues based on students' and societies' requirements must be added to the main curriculum. The whole curriculum must be evaluated continuously, and required changes must be applied.

17.
J Educ Health Promot ; 10: 310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34667810

RESUMO

BACKGROUND: A doctor-patient relationship built on the concept of empathy is so essential to attain the best clinical outcomes in medicine. Since empathy has a positive role in interpersonal relationships and medical outcomes, its assessment is highly crucial. The aim of this study was to assess the empathy in last-year medical students using the Persian version of the Jefferson Scale of Physician Empathy (JSPE) and correlate empathy scores with demographic features. MATERIALS AND METHODS: In this cross-sectional study, last-year medical students at Shiraz Medical School, Shiraz, Iran, were recruited for this study. In this research, we used the Persian version of JSPE. The validity and reliability of the Persian version of this tool were confirmed in the previous research. For the analysis of data, we employed descriptive statistics and the independent sample t-test. RESULTS: One hundred and eighty-five final-year medical students were included in this study. The maximum score of the questionnaire was 140, and the total mean score of empathy was 98.15 ± 13.29. The females' total mean score (102.05 ± 11.89) was higher than the males' score (93.57 ± 13.46). The difference between the mean score of gender and empathy was significant (P value <.001), but there was no significant difference between empathy and the two other demographic factors (P > 0.05). CONCLUSIONS: Although physicians would gain the essential characteristics of empathy during their career, attending professors and other responsible policymakers in medical education should focus more on the factors related to physicians' empathy to train better and more professional physicians.

18.
Clin Cosmet Investig Dermatol ; 13: 425-430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606881

RESUMO

PURPOSE: Vitiligo is an acquired hypopigmentation condition in which well-defined macules can develop virtually everywhere on the patients' skin. This analytic case-control study was conducted in Faghihi Hospital outpatient dermatology clinic, affiliated to Shiraz University of Medical Sciences, southern Iran from June to September 2019. Furthermore, we studied the relationship of hypertension with activity, age of onset, duration, affected body surface area and type of vitiligo. PATIENTS AND METHODS: In the current case-control study, 166 individuals were enrolled in total (the case group was comprised of 83 vitiligo patients and 83 individuals actedas control group). The case group was made up of vitiligo patients (both segmental and non-segmental) between 20 and 50 years of age, no prior history of systemic disease and other hypopigmentation disorders, while individuals with any form of dermatologic findings were excluded from the control group. Individuals aged younger than 20 years old or older than 50, having a dermatologic disease other than vitiligo, being afflicted with the diseases which may lead to secondary hypertension, pregnancy, taking substances, and medication which can lead to hypertension were chosen as the exclusion criteria in this study. RESULTS: Data obtained from our study revealed that vitiligo patients had a higher prevalence of essential hypertension diagnosis than the control group (P=0.040). Also, no significant relationship was found between patients' age at the first lesion appearance (P=0.856), duration of vitiligo involvement (P=0.497), and percentage of vitiligo involvement (P=0.681) with hypertension. CONCLUSION: According to our results, vitiligo patients were more susceptible to hypertension while no association could be found between characteristics of the disease and rise in blood pressure.

19.
J Biomed Nanotechnol ; 16(4): 456-466, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32970978

RESUMO

Among different forms of metallic nanoparticles (NPs), zinc oxide (ZnO) NPs with a very special bandgap of 3.37 eV and considerable binding energy of excitation (60 meV at room temperature), have been classified as high-tech nanoparticles. This study aimed to synthesize ZnO NPs using the extract from Salvia hispanica leaves. The synthesized nanoparticles were fully characterized and the photocatalytic activity was evaluated through the degradation of methylene blue. Additionally, the potential in vitro biological activities of such ZnO NPs in terms of their antibacterial activity were determined, as well as their antioxidant (30 minutes), antiviral (48 hours) and mammalian cell viability properties (48 and 72 hours). This study is the first investigation into the synthesis of such green ZnO NPs mediated by this plant extract, in which both photocatalytic and biomedical properties were found to be promising. The IC50 values for the antibacterial activities were found to be around 17.4 µg mL-1 and 28.5 µg mL-1 for S. aureus and E. coli, respectively, and the antioxidant activity was comparable with the standard BHT. However, the H1N1 inhibition rate using the present green ZnO NPs was lower than oseltamivir (up to about 40% for ZnO NPs and above 90% for oseltamivir) which was expected since it is a drug, but was higher than many synthetic nanoparticles reported in the literature. In addition, the mammalian cell viability assay showed a higher than 80% cellular viability in the presence of 5, 10 and 20 µg mL-1 nanoparticles, and showed a higher than 50% cellular viability in the presence of 50 and 75 µg mL-1 nanoparticles. In this manner, this study showed that these green ZnO NPs should be studied for a wide range of medical applications.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Nanopartículas Metálicas , Salvia , Animais , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Sobrevivência Celular , Escherichia coli , Química Verde , Mamíferos , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Difração de Raios X , Óxido de Zinco/farmacologia
20.
J Biomed Nanotechnol ; 16(4): 520-530, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32970983

RESUMO

Here, an unprecedented synthesis method for nickel oxide nanoparticles (NiO-NPs) was facilitated using Salvia hispanica leaf extracts with the assistance of a high gravity rotating packed bed (RPB) system that enabled fast mass transfer and molecular mixing. The synthesized nanoparticles were anchored on the surface of biodegradable chitosan nanobeads and their photocatalytic activity was evaluated by the degradation of methylene blue. Additionally, the potential biological activities of NiO-NPs in terms of antibacterial (Staphylococcus aureus and Escherichia coli for 24 hours), cytotoxicity (using the PC12 cell line for 24 and 72 hours), and antioxidant activities (based on the discoloration of the methanolic solution of DPPH) were assessed. This novel approach for NiO-NPs@Chitosan synthesis as mediated by a renewable plant extract and facilitated by a high-gravity method, led to the greener synthesis of nanoparticles with significant antibacterial and photocatalytic properties.


Assuntos
Hipergravidade , Nanopartículas Metálicas , Antibacterianos/farmacologia , Química Verde , Testes de Sensibilidade Microbiana , Níquel , Extratos Vegetais , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA