Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 205: 112511, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871598

RESUMO

The present investigation reports the biotransformation of an endrocrine disrupting agent; 1,4-dioxane through bacterial metabolism. Initially, potential bacterial isolates capable of surviving with minimum 1,4-dioxane were screened from industrial wastewater. Thereafter, screening was done to isolate a bacteria which can biotransform higher concentration (1000 mg/L) of 1,4-dioxane. Morphological and biochemical features were examined prior establishing their phylogenetic relationships and the bacterium was identified as Staphylococcus capitis strain AG. Biotransformation experiments were tailored using response surface tool and predictions were made to elucidate the opimal conditions. Critical factors influencing bio-transformation efficiency such as tetrahydrofuran, availability of 1,4-dioxane and inoculum size were varied at three different levels as per the central composite design for ameliorating 1,4-dioxane removal. Functional attenuation of 1,4-dioxane by S. capitis strain AG were understood using spectroscopic techniques were significant changes in the peak positions and chemical shifts were visualized. Mass spectral profile revealed that 1.5 (% v/v) S. capitis strain AG could completely (∼99%) remove 1000 mg/L 1,4-dioxane, when incubated with 2 µg/L tetrahydrofuran for 96 h. The toxicity of 1,4-dioxane and biotransformed products by S. capitis strain AG were tested on Artemia salina. The results of toxicity tests revealed that the metabolic products were less toxic as they exerted minimal mortality rate after 48 h exposure. Thus, this research would be the first to report the response prediction and precise tailoring of 1,4-dioxane biotransformation using S. captis strain AG.


Assuntos
Dioxanos/metabolismo , Staphylococcus capitis , Algoritmos , Biotransformação , Filogenia , Staphylococcus capitis/metabolismo
2.
Environ Res ; 214(Pt 2): 113939, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35921903

RESUMO

1,4-dioxane is a heterocyclic ether used as a polar industrial solvent and are released as waste discharges. 1,4-dioxane deteriorates health and quality, thereby attracts concern by the environment technologists. The need of attaining sustainable development goals have resulted in search of an eco-friendly and technically viable treatment strategy. This extensive review is aimed to emphasis on the (a) characteristics of 1,4-dioxane and their occurrence in the environment as well as their toxicity, (b) remedial strategies, such as physico-chemical treatment and advanced oxidation techniques. Special reference to bioremediation that involves diverse microbial strains and their mechanism are highlighted in this review. The role of macronutrients, stimulants and other abiotic cofactors in the biodegradation of 1,4-dioxane is discussed lucidly. We have critically discussed the inducible enzymes, enzyme-based remediation, distinct instrumental method of analyses to know the fate of intermediates produced from 1,4-dioxane biotransformation. This comprehensive survey also tries to put forth the different toxicity assessment tools used in evaluating the extent of detoxification of 1,4-dioxane achieved through biotransforming mechanism. Conclusively, the challenges, opportunities, techno-economic feasibility and future prospects of implementing 1,4-dioxane through biotechnological interventions are also discussed.


Assuntos
Poluentes Químicos da Água , Biodegradação Ambiental , Dioxanos/análise , Dioxanos/metabolismo , Poluentes Químicos da Água/análise
3.
J Hazard Mater ; 413: 125456, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33930970

RESUMO

The biotransformation of 1,4-dioxane, a endrocrine disrupting chemical was achieved using different bacterial strains and their consortia. Three different bacterial isolates were screened on their ability to grow with 50 mg/L 1,4-dioxane in the basal mineral medium. Then the isolates were tested for its efficiency to biotransform 1000 mg/L 1,4-dioxane at varying period of time; 24-120 h. The isolates were distinguished by their morphological features and 16 S rRNA gene sequencing was done to evaluate the phylogenetic relationships. The isolates were identified as Bacillus marisflavi strain MGA, Aeromonas hydrophila strain AG and Shewanella putrefaciens strain AG. The degree of biotransformation was escalated by constructing a bacterial consortium using statistical tool; response-mixture matrix under the design of experiments. The fully grown bacterial strains were used as ingredients in different proportions to formulate the consortium. The biotransformation was analyzed for functional attenuation using spectroscopic techniques and reduction in 1,4-dioxane level was confirmed using mass spectrometry. The precise quantification of biotransformation using mass spectral profile revealed that the consortium removed 31%, 61% and 85% of 1000 mg/L 1,4-dioxane within 96, 120 and 144 h respectively. The activities of inducible laccase were elucidated during biotransformation of 1,4-dioxane. Bio-toxicity of treated and untreated 1,4-dioxane on brine shrimp; Artemia salina showed that the biotransformed products were less toxic. Therefore, this report would be first of its kind to report the biotransformation and detoxification of 1,4-dioxane by a statistically designed bacterial consortium.


Assuntos
Bactérias , Bacillus , Bactérias/genética , Biotransformação , Dioxanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA