Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 145(5): 758-72, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21565394

RESUMO

We have created a mouse genetic model that mimics a human mutation of Shank3 that deletes the C terminus and is associated with autism. Expressed as a single copy [Shank3(+/ΔC) mice], Shank3ΔC protein interacts with the wild-type (WT) gene product and results in >90% reduction of Shank3 at synapses. This "gain-of-function" phenotype is linked to increased polyubiquitination of WT Shank3 and its redistribution into proteasomes. Similarly, the NR1 subunit of the NMDA receptor is reduced at synapses with increased polyubiquitination. Assays of postsynaptic density proteins, spine morphology, and synapse number are unchanged in Shank3(+/ΔC) mice, but the amplitude of NMDAR responses is reduced together with reduced NMDAR-dependent LTP and LTD. Reciprocally, mGluR-dependent LTD is markedly enhanced. Shank3(+/ΔC) mice show behavioral deficits suggestive of autism and reduced NMDA receptor function. These studies reveal a mechanism distinct from haploinsufficiency by which mutations of Shank3 can evoke an autism-like disorder.


Assuntos
Transtorno Autístico/genética , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Transtorno Autístico/metabolismo , Transtorno Autístico/fisiopatologia , Proteínas de Transporte/genética , Hipocampo/metabolismo , Humanos , Relações Interpessoais , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Camundongos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo , Ubiquitinação
2.
J Am Chem Soc ; 146(15): 10833-10846, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578848

RESUMO

Multiexciton in singlet exciton fission represents a critical quantum state with significant implications for both solar cell applications and quantum information science. Two distinct fields of interest explore contrasting phenomena associated with the geminate triplet pair: one focusing on the persistence of long-lived correlation and the other emphasizing efficient decorrelation. Despite the pivotal nature of multiexciton processes, a comprehensive understanding of their dependence on the structural and spin properties of materials is currently lacking in experimental realizations. To address this gap in knowledge, molecular engineering was employed to modify the TIPS-tetracene structures, enabling an investigation of the structure-property relationships in spin-related multiexciton processes. In lieu of the time-resolved electron paramagnetic resonance technique, two time-resolved magneto-optical spectroscopies were implemented for quantitative analysis of spin-dependent multiexciton dynamics. The utilization of absorption and fluorescence signals as complementary optical readouts, in the presence of a magnetic field, provided crucial insights into geminate triplet pair dynamics. These insights encompassed the duration of multiexciton correlation and the involvement of the spin state in multiexciton decorrelation. Furthermore, simulations based on our kinetic models suggested a role for quintet dilution in multiexciton dynamics, surpassing the singlet dilution principle established by the Merrifield model. The integration of intricate model structures and time-resolved magneto-optical spectroscopies served to explicitly elucidate the interplay between structural and spin properties in multiexciton processes. This comprehensive approach not only contributes to the fundamental understanding of these processes but also aligns with and reinforces previous experimental studies of solid states and theoretical assessments.

3.
J Allergy Clin Immunol ; 151(2): 469-484, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36464527

RESUMO

BACKGROUND: The increased prevalence of many chronic inflammatory diseases linked to gut epithelial barrier leakiness has prompted us to investigate the role of extensive use of dishwasher detergents, among other factors. OBJECTIVE: We sought to investigate the effects of professional and household dishwashers, and rinse agents, on cytotoxicity, barrier function, transcriptome, and protein expression in gastrointestinal epithelial cells. METHODS: Enterocytic liquid-liquid interfaces were established on permeable supports, and direct cellular cytotoxicity, transepithelial electrical resistance, paracellular flux, immunofluorescence staining, RNA-sequencing transcriptome, and targeted proteomics were performed. RESULTS: The observed detergent toxicity was attributed to exposure to rinse aid in a dose-dependent manner up to 1:20,000 v/v dilution. A disrupted epithelial barrier, particularly by rinse aid, was observed in liquid-liquid interface cultures, organoids, and gut-on-a-chip, demonstrating decreased transepithelial electrical resistance, increased paracellular flux, and irregular and heterogeneous tight junction immunostaining. When individual components of the rinse aid were investigated separately, alcohol ethoxylates elicited a strong toxic and barrier-damaging effect. RNA-sequencing transcriptome and proteomics data revealed upregulation in cell death, signaling and communication, development, metabolism, proliferation, and immune and inflammatory responses of epithelial cells. Interestingly, detergent residue from professional dishwashers demonstrated the remnant of a significant amount of cytotoxic and epithelial barrier-damaging rinse aid remaining on washed and ready-to-use dishware. CONCLUSIONS: The expression of genes involved in cell survival, epithelial barrier, cytokine signaling, and metabolism was altered by rinse aid in concentrations used in professional dishwashers. The alcohol ethoxylates present in the rinse aid were identified as the culprit component causing the epithelial inflammation and barrier damage.


Assuntos
Detergentes , Células Epiteliais , Humanos , Detergentes/metabolismo , Células Epiteliais/metabolismo , Trato Gastrointestinal , Regulação para Cima , RNA/metabolismo , Junções Íntimas/metabolismo , Mucosa Intestinal/metabolismo
4.
J Am Chem Soc ; 145(36): 19812-19823, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37656929

RESUMO

Singlet exciton fission in organic chromophores has received much attention during the past decade. Inspired by numerous spectroscopic studies in the solid state, there have been vigorous efforts to study singlet exciton fission dynamics in covalently bonded oligomers, which aims to investigate underlying mechanisms of this intriguing process in simplified model systems. In terms of through-space orbital interactions, however, most of covalently bonded pentacene oligomers studied so far fall into weakly interacting systems since they manifest chain-like structures based on various (non)conjugated linkers. Therefore, it remains as a compelling question to answer how through-space interactions in the solid state intervene this photophysical process since it is hypersensitive to displacements and orientations between neighboring chromophores. Herein, as one of experimental studies to answer this question, we introduced a tight-packing dendritic structure whose mesityl-pentacene constituents are coupled via moderate through-space orbital interactions. Based on the comparison with a suitably controlled dendritic structure, which is in a weak coupling regime, important mechanistic viewpoints are tackled such as configurational mixings between singlet, charge-transfer, and triplet pair states and the role of chromophore multiplication. We underscore that our through-space-coupled dendritic oligomer in a quasi-intermediate coupling regime provides a hint on the interplay of multiconfigurational excited-states, which might have drawn complexity in singlet exciton fission kinetics throughout numerous solid-state morphologies.

5.
Allergy ; 78(8): 2215-2231, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37312623

RESUMO

BACKGROUND: Atopic dermatitis (AD) is the most common chronic inflammatory skin disease with complex pathogenesis for which the cellular and molecular crosstalk in AD skin has not been fully understood. METHODS: Skin tissues examined for spatial gene expression were derived from the upper arm of 6 healthy control (HC) donors and 7 AD patients (lesion and nonlesion). We performed spatial transcriptomics sequencing to characterize the cellular infiltrate in lesional skin. For single-cell analysis, we analyzed the single-cell data from suction blister material from AD lesions and HC skin at the antecubital fossa skin (4 ADs and 5 HCs) and full-thickness skin biopsies (4 ADs and 2 HCs). The multiple proximity extension assays were performed in the serum samples from 36 AD patients and 28 HCs. RESULTS: The single-cell analysis identified unique clusters of fibroblasts, dendritic cells, and macrophages in the lesional AD skin. Spatial transcriptomics analysis showed the upregulation of COL6A5, COL4A1, TNC, and CCL19 in COL18A1-expressing fibroblasts in the leukocyte-infiltrated areas in AD skin. CCR7-expressing dendritic cells (DCs) showed a similar distribution in the lesions. Additionally, M2 macrophages expressed CCL13 and CCL18 in this area. Ligand-receptor interaction analysis of the spatial transcriptome identified neighboring infiltration and interaction between activated COL18A1-expressing fibroblasts, CCL13- and CCL18-expressing M2 macrophages, CCR7- and LAMP3-expressing DCs, and T cells. As observed in skin lesions, serum levels of TNC and CCL18 were significantly elevated in AD, and correlated with clinical disease severity. CONCLUSION: In this study, we show the unknown cellular crosstalk in leukocyte-infiltrated area in lesional skin. Our findings provide a comprehensive in-depth knowledge of the nature of AD skin lesions to guide the development of better treatments.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/metabolismo , Transcriptoma , Receptores CCR7 , Pele/patologia , Doença Crônica , RNA/metabolismo
6.
J Opt Soc Am A Opt Image Sci Vis ; 40(3): A220-A229, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37133045

RESUMO

Previous studies have shown that information concerning object shape is important for the perception of translucency. This study aims to explore how the perception of semi-opaque objects is influenced by surface gloss. We varied specular roughness, specular amplitude, and the simulated direction of a light source used to illuminate a globally convex bumpy object. We found that perceived lightness and roughness increased as specular roughness was increased. Declines in perceived saturation were observed but were far smaller in magnitude with these increases in specular roughness. There were inverse correlations found between perceived gloss and perceived lightness, perceived transmittance and perceived saturation, and between perceived roughness and perceived gloss. Positive correlations were found between perceived transmittance and glossiness, and between perceived roughness and perceived lightness. These findings suggest that specular reflections influence the perception of transmittance and color attributes, and not just perceived gloss. We also performed follow-up modeling of image data to find that perceived saturation and lightness could be explained by the reliance on different image regions with greater chroma and lower lightness, respectively. We also found systematic effects of lighting direction on perceived transmittance that indicate there are complex perceptual interactions that require further consideration.

7.
Virtual Real ; 27(2): 1293-1313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36567954

RESUMO

During head-mounted display (HMD)-based virtual reality (VR), head movements and motion-to-photon-based display lag generate differences in our virtual and physical head pose (referred to as DVP). We propose that large-amplitude, time-varying patterns of DVP serve as the primary trigger for cybersickness under such conditions. We test this hypothesis by measuring the sickness and estimating the DVP experienced under different levels of experimentally imposed display lag (ranging from 0 to 222 ms on top of the VR system's ~ 4 ms baseline lag). On each trial, seated participants made continuous, oscillatory head rotations in yaw, pitch or roll while viewing a large virtual room with an Oculus Rift CV1 HMD (head movements were timed to a computer-generated metronome set at either 1.0 or 0.5 Hz). After the experiment, their head-tracking data were used to objectively estimate the DVP during each trial. The mean, peak, and standard deviation of these DVP data were then compared to the participant's cybersickness ratings for that trial. Irrespective of the axis, or the speed, of the participant's head movements, the severity of their cybersickness was found to increase with each of these three DVP summary measures. In line with our DVP hypothesis, cybersickness consistently increased with the amplitude and the variability of our participants' DVP. DVP similarly predicted their conscious experiences during HMD VR-such as the strength of their feelings of spatial presence and their perception of the virtual scene's stability.

8.
J Opt Soc Am A Opt Image Sci Vis ; 39(8): 1343-1351, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36215577

RESUMO

This paper presents and evaluates a system and method that record spatiotemporal scene information and location of the center of visual attention, i.e., spatiotemporal point of regard (PoR) in ecological environments. A primary research application of the proposed system and method is for enhancing current 2D visual attention models. Current eye-tracking approaches collapse a scene's depth structures to a 2D image, omitting visual cues that trigger important functions of the human visual system (e.g., accommodation and vergence). We combined head-mounted eye-tracking with a miniature time-of-flight camera to produce a system that could be used to estimate the spatiotemporal location of the PoR-the point of highest visual attention-within 3D scene layouts. Maintaining calibration accuracy is a primary challenge for gaze mapping; hence, we measured accuracy repeatedly by matching the PoR to fixated targets arranged within a range of working distances in depth. Accuracy was estimated as the deviation from estimated PoR relative to known locations of scene targets. We found that estimates of 3D PoR had an overall accuracy of approximately 2° omnidirectional mean average error (OMAE) with variation over a 1 h recording maintained within 3.6° OMAE. This method can be used to determine accommodation and vergence cues of the human visual system continuously within habitual environments, including everyday applications (e.g., use of hand-held devices).


Assuntos
Acomodação Ocular , Calibragem , Humanos
9.
J Phys Chem A ; 125(3): 875-884, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33439653

RESUMO

We investigated the potential of chromophore's rotations to tune singlet fission (SF) kinetics in perylene bisimide (PBI) dimers in addition to relative horizontal displacements. The total number of 250 PBI dimers (five displacements along the long and short axis of PBI, respectively, and ten rotation angle changes from parallel to perpendicular alignment) was examined. Ground-state energies showed that dimer formation is favored in all orientations with some differences in interaction strength. Time-dependent density functional theory predicted S1 and T1 excitons' energy, and the thermodynamic feasibility of SF process was judged by the energy difference between a S1 exciton and twice of T1 excitons. In addition, we also estimated the relative rate of multiexciton generation step by the three-state kinetic model with the results of restricted active space employing double spin-flip. Nine promising orientations including two parallel PBI dimers and seven twisted ones were discussed. Wave function composition analysis showed that SF occurs mainly through the superexchange mechanism in various twisted PBI dimers, but the direct two-electron and coherent pathway could be operative at the particular positions. Quantum chemical simulations suggested the rotation as an effective tool to tune SF efficiency in PBI dimers, which is helpful to substantiate more efficient SF material.

10.
J Vis ; 21(2): 7, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33576764

RESUMO

We examined whether perception of color saturation and lightness depends on the three-dimensional (3D) shape and surface gloss of surfaces rendered to have different hues. In Experiment 1, we parametrically varied specular roughness of predominantly planar surfaces with different mesoscopic relief heights. The orientation of surfaces was varied relative to the light source and observer. Observers matched perceived lightness and chroma (effectively saturation) using spherical objects rendered using CIE LCH color space. We observed strong interactions between perceived saturation and lightness with changes in surface orientation and surface properties (specular roughness and 3D relief height). Declines in saturation and increases in lightness were observed with increasing specular roughness. Changes in relief height had greater effects on perceived saturation and lightness for blue hues compared with reddish and greenish hues. Experiment 2 found inverse correlations between perceived gloss and specular roughness across conditions. Experiment 3 estimated perceived specular coverage and found that a weighted combination of perceived gloss and specular coverage could account for perceived color saturation and lightness, with different coefficients accounting for the perceptual experience for each of the three hue conditions. These findings suggest that perceived color saturation and lightness depend on the separation of specular highlights from diffuse shading informative of chromatic surface reflectance.


Assuntos
Percepção de Cores/fisiologia , Propriedades de Superfície , Humanos , Imageamento Tridimensional , Luz , Orientação Espacial/fisiologia
11.
Angew Chem Int Ed Engl ; 60(17): 9379-9383, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33590640

RESUMO

Charge-recombination processes are critical for photovoltaic applications and should be suppressed for efficient charge transport. Here, we report that an applied magnetic field (0-1 T) can be used control the charge-recombination dynamics in an expanded rosarin-C60 complex. In the low magnetic field regime (<100 mT), the charge-recombination rate slows down due to hyperfine coupling, as inferred from transient absorption spectroscopic analyses. In contrast, in the high field regime, i.e., over 500 mT, the charge-recombination rate recovers and increases because the Δg mechanism facilitates spin conversion to a triplet charge-separated state (S to T0 ) that undergoes rapid charge-recombination to a localized rosarin triplet state. Therefore, we highlight the charge-recombination rate and the localized triplet state population can be modulated by the magnetic field in charge donor/acceptor non-covalent complexes.

12.
J Am Chem Soc ; 142(17): 7845-7857, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32267155

RESUMO

The singlet fission (SF) process is generally defined as the conversion of one singlet exciton (S1) into two triplet excitons (2·T1), which has the potential to overcome thermalization losses in the field of photovoltaic devices. Among the applicable compounds for SF-based photovoltaic devices, perylene bisimide (PBI) is one of the best candidates because of its electronic tunability and photostability. However, the strategy for efficient SF in PBIs remains ambiguous because of numerous competing relaxation pathways in PBI-based molecular materials. In this regard, for the first time, we observed the SF mechanism in PBI dimers by controlling the intrinsic factor (exciton coupling) and the external environment (solvent polarity and viscosity). Time-resolved spectroscopic measurements and quantum chemical simulations reveal that efficient SF occurs through the charge-transfer-assisted mechanism, entailing a large structural fluctuation. Our findings not only highlight the SF mechanism in PBI dimers but also suggest the factors responsible for an efficient SF process, which are important considerations in the design of molecular materials for photovoltaic devices.

13.
Proc Natl Acad Sci U S A ; 114(52): 13840-13845, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229812

RESUMO

A fundamental problem in extracting scene structure is distinguishing different physical sources of image structure. Light reflected by an opaque surface covaries with local surface orientation, whereas light transported through the body of a translucent material does not. This suggests the possibility that the visual system may use the covariation of local surface orientation and intensity as a cue to the opacity of surfaces. We tested this hypothesis by manipulating the contrast of luminance gradients and the surface geometries to which they belonged and assessed how these manipulations affected the perception of surface opacity/translucency. We show that (i) identical luminance gradients can appear either translucent or opaque depending on the relationship between luminance and perceived 3D surface orientation, (ii) illusory percepts of translucency can be induced by embedding opaque surfaces in diffuse light fields that eliminate the covariation between surface orientation and intensity, and (iii) illusory percepts of opacity can be generated when transparent materials are embedded in a light field that generates images where surface orientation and intensity covary. Our results provide insight into how the visual system distinguishes opaque surfaces and light-permeable materials and why discrepancies arise between the perception and physics of opacity and translucency. These results suggest that the most significant information used to compute the perceived opacity and translucency of surfaces arise at a level of representation where 3D shape is made explicit.


Assuntos
Sensibilidades de Contraste/fisiologia , Mascaramento Perceptivo/fisiologia , Feminino , Humanos , Masculino
14.
Angew Chem Int Ed Engl ; 59(39): 16989-16996, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32558161

RESUMO

Upon photon absorption, π-conjugated organics are apt to undergo ultrafast structural reorganization via electron-vibrational coupling during non-adiabatic transitions. Ultrafast nuclear motions modulate local planarity and quinoid/benzenoid characters within conjugated backbones, which control primary events in the excited states, such as localization, energy transfer, and so on. Femtosecond broadband fluorescence upconversion measurements were conducted to investigate exciton self-trapping and delocalization in cycloparaphenylenes as ultrafast structural reorganizations are achieved via excited-state symmetry-dependent electron-vibrational coupling. By accessing two high-lying excited states, one-photon and two-photon allowed states, a clear discrepancy in the initial time-resolved fluorescence spectra and the temporal dynamics/spectral evolution of fluorescence spectra were monitored. Combined with quantum chemical calculations, a novel insight into the effect of the excited-state symmetry on ultrafast structural reorganization and exciton self-trapping in the emerging class of π-conjugated materials is provided.

15.
Angew Chem Int Ed Engl ; 59(47): 20956-20964, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32633897

RESUMO

Singlet fission in organic semiconducting materials has attracted great attention for the potential application in photovoltaic devices. Research interests have been concentrated on identifying working mechanisms of coherent SF processes in crystalline solids as ultrafast SF is hailed for efficient multiexciton generation. However, as long lifetime of multiexcitonic triplet pair in amorphous solids facilitates the decorrelation process for triplet exciton extractions, a precise examination of incoherent SF processes is demanded in delicate model systems to represent heterogeneous structures. Heterogeneous coupling and energetics for SF were developed in our oligoacene dendrimers, which mimic complicated SF dynamics in amorphous solids. SF dynamics in dendritic structures was thoroughly investigated by time-resolved spectroscopic techniques and quantum chemical calculations in respect of the relative orientation/distance between chromophores and though-bond/-space interactions.

16.
Optom Vis Sci ; 94(7): 726-731, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28650386

RESUMO

PURPOSE: This work aims to characterize the relationship between tear film neuropeptide substance P and the structural integrity of the sub-basal nerve plexus in diabetes. METHODS: Seventeen healthy control participants and nine participants with diabetes were recruited in this cross-sectional study. Total protein content and substance P concentrations were determined in the flush tears of participants. Corneal nerve morphology was assessed by capturing the corneal sub-basal nerve plexus using the Heidelberg Retinal Tomograph II with the Rostock Corneal Module (Heidelberg Engineering GmbH, Heidelberg, Germany) in the central cornea. Corneal nerve fiber density (CNFD) was measured using ACCMetrics (M.A. Dabbah, Imaging Science and Biomedical Engineering, Manchester, UK) on eight captured images. Comparisons between groups were made using independent samples t-tests. Correlations between parameters were analyzed using Pearson's correlations. RESULTS: Substance P concentrations were significantly higher in the tears of the control group compared to participants with diabetes (4150 ± 4752 and 1473 ± 1671 pg/mL, respectively, P = .047). There was no significant difference in total protein content between the groups (3.4 ± 1.8 and 2.6 ± 1.7 mg/mL in the control and diabetes groups, respectively, P = .262). CNFD was significantly lower in the participants with diabetes compared to the control group (16.1 ± 5.7 and 21.5 ± 7.0 mm/mm, respectively, P = .041). There was a moderate correlation between substance P and CNFD (r = 0.48, P = .01). CONCLUSIONS: Substance P is expressed at a significantly lower level in the tears of people with diabetes compared with healthy controls. The positive correlation between substance P and corneal nerve density indicates that substance P may be a potential biomarker for corneal nerve health.


Assuntos
Córnea/inervação , Doenças da Córnea/patologia , Diabetes Mellitus Tipo 2/metabolismo , Proteínas do Olho/metabolismo , Substância P/metabolismo , Lágrimas/metabolismo , Doenças do Nervo Trigêmeo/patologia , Estudos de Casos e Controles , Doenças da Córnea/metabolismo , Estudos Transversais , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Estudos Prospectivos , Nervo Trigêmeo/patologia , Doenças do Nervo Trigêmeo/metabolismo
17.
J Vis ; 17(3): 17, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28355629

RESUMO

Previous studies have shown that the perceived three-dimensional (3D) shape of objects depends on their material composition. The majority of this work has focused on glossy, flat-matte, or velvety materials. Here, we studied perceived 3D shape of translucent materials. We manipulated the spatial frequency of surface relief perturbations of translucent and opaque objects. Observers indicated which of two surfaces appeared to have more bumps. They also judged local surface orientation using gauge probe figures. We found that translucent surfaces appeared to have fewer bumps than opaque surfaces with the same 3D shape (Experiment 1), particularly when self-occluding contours were hidden from view (Experiment 2). We also found that perceived local curvature was underestimated for translucent objects relative to opaque objects, and that estimates of perceived local surface orientation were similarly correlated with luminance for images of both opaque and translucent objects (Experiment 3). These findings suggest that the perceived mesoscopic shape of completely matte translucent objects can be underestimated due to a decline in the steepness of luminance gradients relative to those of opaque objects.


Assuntos
Percepção de Forma/fisiologia , Imageamento Tridimensional , Propriedades de Superfície , Adulto , Meios de Contraste , Percepção de Profundidade/fisiologia , Humanos , Orientação Espacial
18.
Exp Brain Res ; 234(6): 1599-609, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26838356

RESUMO

When a single light cue is given in the visual field, our eyes orient towards it with an average latency of 200 ms. If a second cue is presented at or around the time of the response to the first, a secondary eye movement occurs that represents a reorientation to the new target. While studies have shown that eye movement latencies to 'single-step' targets may or may not be lengthened with age, secondary eye movements (during 'double-step' displacements) are significantly delayed with increasing age. The aim of this study was to investigate whether the postural challenge posed simply by standing (as opposed to sitting) results in significantly longer eye movement latencies in older adults compared to the young. Ten young (<35 years) and 10 older healthy adults (>65 years) participated in the study. They were required to fixate upon a central target and move their eyes in response to 2 types of stimuli: (1) a single-step perturbation of target position either 15° to the right or left and (2) a double-step target displacement incorporating an initial target jump to the right or left by 15°, followed after 200 ms, by a shift of target position to the opposite side (e.g. +15° then -15°). All target displacement conditions were executed in sit and stand positions with the participant at the same distance from the targets. Eye movements were recorded using electro-oculography. Older adults did not show significantly longer eye movement latencies than the younger adults for single-step target displacements, and postural configuration (stand compared to sit) had no effect upon latencies for either group. We categorised double-step trials into those during which the second light changed after or before the onset of the eye shift to the first light. For the former category, young participants showed faster secondary eye shifts to the second light in the standing position, while the older adults did not. For the latter category of double-step trial, young participants showed no significant difference between sit and stand secondary eye movement latencies, but older adults were significantly longer standing compared to sitting. The older adults were significantly longer than the younger adults across both postural conditions, regardless of when the second light change occurred during the eye shift to the first light. We suggest that older adults require greater time and perhaps attentional processes to execute eye movements to unexpected changes in target position when faced with the need to maintain standing balance.


Assuntos
Envelhecimento/fisiologia , Movimentos Oculares/fisiologia , Postura/fisiologia , Tempo de Reação/fisiologia , Adolescente , Adulto , Fatores Etários , Idoso , Eletroculografia , Fixação Ocular/fisiologia , Humanos , Adulto Jovem
19.
J Vis ; 16(6): 5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27271807

RESUMO

Shading is well known to provide information the visual system uses to recover the three-dimensional shape of objects. We examined conditions under which patterns in shading promote the experience of a change in depth at contour boundaries, rather than a change in reflectance. In Experiment 1, we used image manipulation to illuminate different regions of a smooth surface from different directions. This manipulation imposed local differences in shading direction across edge contours (delta shading). We found that increasing the angle of delta shading, from 0° to 180°, monotonically increased perceived depth across the edge. Experiment 2 found that the perceptual splitting of shading into separate foreground and background surfaces depended on an assumed light source from above prior. Image regions perceived as foreground structures in upright images appeared farther in depth when the same images were inverted. We also found that the experienced break in surface continuity could promote the experience of amodal completion of colored contours that were ambiguous as to their depth order (Experiment 3). These findings suggest that the visual system can identify occlusion relationships based on monocular variations in local shading direction, but interprets this information according to a light source from above prior of midlevel visual processing.


Assuntos
Sensibilidades de Contraste/fisiologia , Percepção de Profundidade/fisiologia , Percepção de Forma/fisiologia , Percepção Visual/fisiologia , Humanos , Imageamento Tridimensional
20.
J Vis ; 16(3): 31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26913623

RESUMO

In the present study we investigated the detectability of three-dimensional (3D) cocircular contours defined by binocular disparity and established the influence of a number of stimulus factors to their perception. In Experiment 1 we examined the depth range over which local elements are grouped in depth, and whether contour detectability systematically changed with the degree to which they are oriented in depth. We found that increasing the orientation of curved contours in depth improved detection performance. In Experiment 2, we examined the degree to which contour detection was disrupted by varying their continuity in depth by jittering the local depth position of contour elements. Detection performance declined with the increasing displacement of local contour elements in depth away from the depth orientation of the contour. Experiments 3 and 4 ascertained whether a detection advantage is afforded to 3D contours defined by local variations in luminance polarity and color. Local color and polarity differences can disrupt the two-dimensional grouping of local contour elements on the basis of similarity, but we tested whether continuity in depth facilitates grouping of contour elements differing in polarity and color. We found no detection advantage for 3D contours defined by local color and polarity variations, suggesting binocular disparity does not facilitate grouping in depth when local elements differ in color and polarity. These findings further suggest the visual system uses binocular disparity to detect contours, but is likely to involve systems tuned to luminance polarity and color.


Assuntos
Percepção de Cores/fisiologia , Percepção de Forma/fisiologia , Imageamento Tridimensional , Luz , Disparidade Visual , Humanos , Orientação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA