Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8011): 384-392, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600385

RESUMO

Debate remains around the anatomical origins of specific brain cell subtypes and lineage relationships within the human forebrain1-7. Thus, direct observation in the mature human brain is critical for a complete understanding of its structural organization and cellular origins. Here we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific mosaic variant barcode analysis. From four hemispheres and two different human neurotypical donors, we identified 287 and 780 mosaic variants, respectively, that were used to deconvolve clonal dynamics. Clonal spread and allele fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted than resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome transcriptome analysis at both a cell-type-specific and a single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of mosaic variants across 17 locations within one parietal lobe reveals that restriction of clonal spread in the anterior-posterior axis precedes restriction in the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus, cell-type-resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.


Assuntos
Linhagem da Célula , Células Clonais , Mosaicismo , Neurônios , Prosencéfalo , Idoso , Feminino , Humanos , Alelos , Linhagem da Célula/genética , Células Clonais/citologia , Células Clonais/metabolismo , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Hipocampo/citologia , Proteínas de Homeodomínio/metabolismo , Neocórtex/citologia , Inibição Neural , Neurônios/citologia , Neurônios/metabolismo , Lobo Parietal/citologia , Prosencéfalo/anatomia & histologia , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Análise de Célula Única , Transcriptoma/genética
2.
Annu Rev Genomics Hum Genet ; 23: 427-448, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35676073

RESUMO

Genetic diseases disrupt the functionality of an infant's genome during fetal-neonatal adaptation and represent a leading cause of neonatal and infant mortality in the United States. Due to disease acuity, gene locus and allelic heterogeneity, and overlapping and diverse clinical phenotypes, diagnostic genome sequencing in neonatal intensive care units has required the development of methods to shorten turnaround times and improve genomic interpretation. From 2012 to 2021, 31 clinical studies documented the diagnostic and clinical utility of first-tier rapid or ultrarapid whole-genome sequencing through cost-effective identification of pathogenic genomic variants that change medical management, suggest new therapeutic strategies, and refine prognoses. Genomic diagnosis also permits prediction of reproductive recurrence risk for parents and surviving probands. Using implementation science and quality improvement, deployment of a genomic learning healthcare system will contribute to a reduction of neonatal and infant mortality through the integration of genome sequencing into best-practice neonatal intensive care.


Assuntos
Testes Genéticos , Unidades de Terapia Intensiva Neonatal , Testes Genéticos/métodos , Genômica , Humanos , Recém-Nascido , Sequenciamento Completo do Genoma/métodos
3.
Am J Hum Genet ; 109(9): 1605-1619, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36007526

RESUMO

Newborn screening (NBS) dramatically improves outcomes in severe childhood disorders by treatment before symptom onset. In many genetic diseases, however, outcomes remain poor because NBS has lagged behind drug development. Rapid whole-genome sequencing (rWGS) is attractive for comprehensive NBS because it concomitantly examines almost all genetic diseases and is gaining acceptance for genetic disease diagnosis in ill newborns. We describe prototypic methods for scalable, parentally consented, feedback-informed NBS and diagnosis of genetic diseases by rWGS and virtual, acute management guidance (NBS-rWGS). Using established criteria and the Delphi method, we reviewed 457 genetic diseases for NBS-rWGS, retaining 388 (85%) with effective treatments. Simulated NBS-rWGS in 454,707 UK Biobank subjects with 29,865 pathogenic or likely pathogenic variants associated with 388 disorders had a true negative rate (specificity) of 99.7% following root cause analysis. In 2,208 critically ill children with suspected genetic disorders and 2,168 of their parents, simulated NBS-rWGS for 388 disorders identified 104 (87%) of 119 diagnoses previously made by rWGS and 15 findings not previously reported (NBS-rWGS negative predictive value 99.6%, true positive rate [sensitivity] 88.8%). Retrospective NBS-rWGS diagnosed 15 children with disorders that had been undetected by conventional NBS. In 43 of the 104 children, had NBS-rWGS-based interventions been started on day of life 5, the Delphi consensus was that symptoms could have been avoided completely in seven critically ill children, mostly in 21, and partially in 13. We invite groups worldwide to refine these NBS-rWGS conditions and join us to prospectively examine clinical utility and cost effectiveness.


Assuntos
Triagem Neonatal , Medicina de Precisão , Criança , Estado Terminal , Testes Genéticos/métodos , Humanos , Recém-Nascido , Triagem Neonatal/métodos , Estudos Retrospectivos
4.
Am J Respir Crit Care Med ; 209(8): 973-986, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38240721

RESUMO

Rationale: The plasma lipidome has the potential to reflect many facets of the host status during severe infection. Previous work is limited to specific lipid groups or was focused on lipids as prognosticators.Objectives: To map the plasma lipidome during sepsis due to community-acquired pneumonia (CAP) and determine the disease specificity and associations with clinical features.Methods: We analyzed 1,833 lipid species across 33 classes in 169 patients admitted to the ICU with sepsis due to CAP, 51 noninfected ICU patients, and 48 outpatient controls. In a paired analysis, we reanalyzed patients still in the ICU 4 days after admission (n = 82).Measurements and Main Results: A total of 58% of plasma lipids were significantly lower in patients with CAP-attributable sepsis compared with outpatient controls (6% higher, 36% not different). We found strong lipid class-specific associations with disease severity, validated across two external cohorts, and inflammatory biomarkers, in which triacylglycerols, cholesterol esters, and lysophospholipids exhibited the strongest associations. A total of 36% of lipids increased over time, and stratification by survival revealed diverging lipid recovery, which was confirmed in an external cohort; specifically, a 10% increase in cholesterol ester levels was related to a lower odds ratio (0.84; P = 0.006) for 30-day mortality (absolute mortality, 18 of 82). Comparison with noninfected ICU patients delineated a substantial common illness response (57.5%) and a distinct lipidomic signal for patients with CAP-attributable sepsis (37%).Conclusions: Patients with sepsis due to CAP exhibit a time-dependent and partially disease-specific shift in their plasma lipidome that correlates with disease severity and systemic inflammation and is associated with higher mortality.


Assuntos
Infecções Comunitárias Adquiridas , Pneumonia , Sepse , Humanos , Lipidômica , Pneumonia/complicações , Sepse/complicações , Lipídeos , Índice de Gravidade de Doença , Unidades de Terapia Intensiva
5.
Am J Hum Genet ; 108(7): 1231-1238, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34089648

RESUMO

Genetic disorders are a leading contributor to mortality in neonatal and pediatric intensive care units (ICUs). Rapid whole-genome sequencing (rWGS)-based rapid precision medicine (RPM) is an intervention that has demonstrated improved clinical outcomes and reduced costs of care. However, the feasibility of broad clinical deployment has not been established. The objective of this study was to implement RPM based on rWGS and evaluate the clinical and economic impact of this implementation as a first line diagnostic test in the California Medicaid (Medi-Cal) program. Project Baby Bear was a payor funded, prospective, real-world quality improvement project in the regional ICUs of five tertiary care children's hospitals. Participation was limited to acutely ill Medi-Cal beneficiaries who were admitted November 2018 to May 2020, were <1 year old and within one week of hospitalization, or had just developed an abnormal response to therapy. The whole cohort received RPM. There were two prespecified primary outcomes-changes in medical care reported by physicians and changes in the cost of care. The majority of infants were from underserved populations. Of 184 infants enrolled, 74 (40%) received a diagnosis by rWGS that explained their admission in a median time of 3 days. In 58 (32%) affected individuals, rWGS led to changes in medical care. Testing and precision medicine cost $1.7 million and led to $2.2-2.9 million cost savings. rWGS-based RPM had clinical utility and reduced net health care expenditures for infants in regional ICUs. rWGS should be considered early in ICU admission when the underlying etiology is unclear.


Assuntos
Estado Terminal/terapia , Medicina de Precisão , Sequenciamento Completo do Genoma , California , Estudos de Coortes , Efeitos Psicossociais da Doença , Cuidados Críticos , Feminino , Hospitais Pediátricos , Humanos , Lactente , Recém-Nascido , Masculino , Medicaid , Estudos Prospectivos , Resultado do Tratamento , Estados Unidos
6.
Genet Med ; 26(1): 101006, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37869996

RESUMO

PURPOSE: Copy-number variants (CNVs) and other non-single nucleotide variant/indel variant types contribute an important proportion of diagnoses in individuals with suspected genetic disease. This study describes the range of such variants detected by genome sequencing (GS). METHODS: For a pediatric cohort of 1032 participants undergoing clinical GS, we characterize the CNVs and other non-single nucleotide variant/indel variant types that were reported, including aneuploidies, mobile element insertions, and uniparental disomies, and we describe the bioinformatic pipeline used to detect these variants. RESULTS: Together, these genetic alterations accounted for 15.8% of reported variants. Notably, 67.9% of these were deletions, 32.9% of which overlapped a single gene, and many deletions were reported together with a second variant in the same gene in cases of recessive disease. A retrospective medical record review in a subset of this cohort revealed that up to 6 additional genetic tests were ordered in 68% (26/38) of cases, some of which failed to report the CNVs/rare variants reported on GS. CONCLUSION: GS detected a broad range of reported variant types, including CNVs ranging in size from 1 Kb to 46 Mb.


Assuntos
Genoma , Genômica , Humanos , Criança , Estudos Retrospectivos , Mapeamento Cromossômico , Nucleotídeos , Variações do Número de Cópias de DNA/genética , Polimorfismo de Nucleotídeo Único/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-38668387

RESUMO

OBJECTIVES: Analysis of the clinical utility of rapid whole-genome sequencing (rWGS) outside of the neonatal period is lacking. We describe the use of rWGS in PICU and cardiovascular ICU (CICU) patients across four institutions. DESIGN: Ambidirectional multisite cohort study. SETTING: Four tertiary children's hospitals. PATIENTS: Children 0-18 years old in the PICU or CICU who underwent rWGS analysis, from May 2016 to June 2023. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A total of 133 patients underwent clinical, phenotype-driven rWGS analysis, 36 prospectively. A molecular diagnosis was identified in 79 patients (59%). Median (interquartile range [IQR]) age was 6 months (IQR 1.2 mo-4.6 yr). Median time for return of preliminary results was 3 days (IQR 2-4). In 79 patients with a molecular diagnosis, there was a change in ICU management in 19 patients (24%); and some change in clinical management in 63 patients (80%). Nondiagnosis changed management in 5 of 54 patients (9%). The clinical specialty ordering rWGS did not affect diagnostic rate. Factors associated with greater odds ratio (OR [95% CI]; OR [95% CI]) of diagnosis included dysmorphic features (OR 10.9 [95% CI, 1.8-105]) and congenital heart disease (OR 4.2 [95% CI, 1.3-16.8]). Variables associated with greater odds of changes in management included obtaining a genetic diagnosis (OR 16.6 [95% CI, 5.5-62]) and a shorter time to genetic result (OR 0.8 [95% CI, 0.76-0.9]). Surveys of pediatric intensivists indicated that rWGS-enhanced clinical prognostication (p < 0.0001) and contributed to a decision to consult palliative care (p < 0.02). CONCLUSIONS: In this 2016-2023 multiple-PICU/CICU cohort, we have shown that timely genetic diagnosis is feasible across institutions. Application of rWGS had a 59% (95% CI, 51-67%) rate of diagnostic yield and was associated with changes in critical care management and long-term patient management.

8.
Am J Med Genet C Semin Med Genet ; 193(1): 7-12, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36691939

RESUMO

The cost and time needed to conduct whole-genome sequencing (WGS) have decreased significantly in the last 20 years. At the same time, the number of conditions with a known molecular basis has steadily increased, as has the number of investigational new drug applications for novel gene-based therapeutics. The prospect of precision gene-targeted therapy for all seems in reach… or is it? Here we consider practical and strategic considerations that need to be addressed to establish a foundation for the early, effective, and equitable delivery of these treatments.


Assuntos
Terapia Genética , Doenças Raras , Humanos , Doenças Raras/genética , Doenças Raras/terapia
9.
Am J Hum Genet ; 107(5): 953-962, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33157008

RESUMO

Rapid diagnostic genomic sequencing recently became feasible for infants in intensive care units (ICUs). However, research regarding parents' perceived utility, adequacy of consent, and potential harms and benefits is lacking. Herein we report results of parental surveys of these domains from the second Newborn Sequencing in Genomic Medicine and Public Health (NSIGHT2) study, a randomized, controlled trial of rapid diagnostic genomic sequencing of infants in regional ICUs. More than 90% of parents reported feeling adequately informed to consent to diagnostic genomic sequencing. Despite only 23% (27) of 117 infants receiving genomic diagnoses, 97% (156) of 161 parents reported that testing was at least somewhat useful and 50.3% (88/161) reported no decisional regret (median 0, mean 10, range 0-100). Five of 117 families (4.3%) reported harm. Upon follow-up, one (1%) confirmed harm to child and parent related to negative results/no diagnosis, two (2%) reported stress or confusion, and two (2%) denied harm. In 81% (89) of 111 infants, families and clinicians agreed that genomic results were useful. Of the families for whom clinicians perceived harm from genomic testing, no parents reported harm. Positive tests/genomic diagnosis were more frequently perceived to be useful by parents, to benefit their infant, and to help manage potential symptoms (p < .05). In summary, the large majority of parents felt that first-tier, rapid, diagnostic genomic sequencing was beneficial for infants lacking etiologic diagnoses in ICUs. Most parents in this study perceived being adequately informed to consent, understood their child's results, and denied regret or harm from undergoing sequencing.


Assuntos
Tomada de Decisão Clínica/métodos , Doenças Genéticas Inatas/diagnóstico , Testes Genéticos , Genoma Humano , Consentimento Livre e Esclarecido/psicologia , Pais/psicologia , Adulto , Mapeamento Cromossômico , Estado Terminal , Gerenciamento Clínico , Feminino , Doenças Genéticas Inatas/genética , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Masculino , Estudos Prospectivos , Inquéritos e Questionários , Fatores de Tempo , Sequenciamento Completo do Genoma
10.
Am J Hum Genet ; 107(5): 942-952, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33157007

RESUMO

The second Newborn Sequencing in Genomic Medicine and Public Health (NSIGHT2) study was a randomized, controlled trial of rapid whole-genome sequencing (rWGS) or rapid whole-exome sequencing (rWES) in infants with diseases of unknown etiology in intensive care units (ICUs). Gravely ill infants were not randomized and received ultra-rapid whole-genome sequencing (urWGS). Herein we report results of clinician surveys of the clinical utility of rapid genomic sequencing (RGS). The primary end-point-clinician perception that RGS was useful- was met for 154 (77%) of 201 infants. Both positive and negative tests were rated as having clinical utility (42 of 45 [93%] and 112 of 156 [72%], respectively). Physicians reported that RGS changed clinical management in 57 (28%) infants, particularly in those receiving urWGS (p = 0.0001) and positive tests (p < 0.00001). Outcomes of 32 (15%) infants were perceived to be changed by RGS. Positive tests changed outcomes more frequently than negative tests (p < 0.00001). In logistic regression models, the likelihood that RGS was perceived as useful increased 6.7-fold when associated with changes in management (95% CI 1.8-43.3). Changes in management were 10.1-fold more likely when results were positive (95% CI 4.7-22.4) and turnaround time was shorter (odds ratio 0.92, 95% CI 0.85-0.99). RGS seldom led to clinician-perceived confusion or distress among families (6 of 207 [3%]). In summary, clinicians perceived high clinical utility and low likelihood of harm with first-tier RGS of infants in ICUs with diseases of unknown etiology. RGS was perceived as beneficial irrespective of whether results were positive or negative.


Assuntos
Tomada de Decisão Clínica/métodos , Gerenciamento Clínico , Doenças Genéticas Inatas/diagnóstico , Testes Genéticos , Genoma Humano , Sequenciamento Completo do Genoma/métodos , Mapeamento Cromossômico , Estado Terminal , Feminino , Doenças Genéticas Inatas/genética , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Modelos Logísticos , Masculino , Estudos Prospectivos , Fatores de Tempo
11.
Am J Med Genet A ; 191(4): 930-940, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36651673

RESUMO

Increasing use of unbiased genomic sequencing in critically ill infants can expand understanding of rare diseases such as Kabuki syndrome (KS). Infants diagnosed with KS through genome-wide sequencing performed during the initial hospitalization underwent retrospective review of medical records. Human phenotype ontology terms used in genomic analysis were aggregated and analyzed. Clinicians were surveyed regarding changes in management and other care changes. Fifteen infants met inclusion criteria. KS was not suspected prior to genomic sequencing. Variants were classified as Pathogenic (n = 10) or Likely Pathogenic (n = 5) by American College of Medical Genetics and Genomics Guidelines. Fourteen variants were de novo (KMT2D, n = 12, KDM6A, n = 2). One infant inherited a likely pathogenic variant in KMT2D from an affected father. Frequent findings involved cardiovascular (14/15) and renal (7/15) systems, with palatal defects also identified (6/15). Three infants had non-immune hydrops. No minor anomalies were universally documented; ear anomalies, micrognathia, redundant nuchal skin, and hypoplastic nails were common. Changes in management were reported in 14 infants. Early use of unbiased genome-wide sequencing enabled a molecular diagnosis prior to clinical recognition including infants with atypical or rarely reported features of KS while also expanding the phenotypic spectrum of this rare disorder.


Assuntos
Anormalidades Múltiplas , Doenças Hematológicas , Doenças Vestibulares , Gravidez , Feminino , Humanos , Lactente , Anormalidades Múltiplas/genética , Face/anormalidades , Doenças Hematológicas/genética , Doenças Vestibulares/genética , Fenótipo , Histona Desmetilases/genética
12.
Am J Med Genet C Semin Med Genet ; 190(2): 243-256, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36218021

RESUMO

In this Dispatch from Biotech, we briefly review the urgent need for extensive expansion of newborn screening (NBS) by genomic sequencing, and the reasons why early attempts had limited success. During the next decade transformative developments will continue in society and in the pharmaceutical, biotechnology, informatics, and medical sectors that enable prompt addition of genetic disorders to NBS by rapid whole genome sequencing (rWGS) upon introduction of new therapies that qualify them according to the Wilson and Jungner criteria (Wilson, J. M. G., & Jungner, G., World Health Organization. (1968). Principles and Practice of Screening for Disease. World Health Organization. Retrieved from https://apps.who.int/iris/handle/10665/37650). Herein we describe plans, progress, and clinical trial designs for BeginNGS (Newborn Genome Sequencing to end the diagnostic and therapeutic odyssey), a new international, pre-competitive, public-private consortium that proposes to implement a self-learning healthcare delivery system for screening all newborns for over 400 hundred genetic diseases, diagnostic confirmation, implementation of effective treatment, and acceleration of orphan drug development. We invite investigators and stakeholders worldwide to join the consortium in a prospective, multi-center, international trial of the clinical utility and cost effectiveness of BeginNGS.


Assuntos
Biotecnologia , Triagem Neonatal , Recém-Nascido , Humanos , Estudos Prospectivos , Preparações Farmacêuticas
13.
Am J Hum Genet ; 105(4): 719-733, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564432

RESUMO

The second Newborn Sequencing in Genomic Medicine and Public Health study was a randomized, controlled trial of the effectiveness of rapid whole-genome or -exome sequencing (rWGS or rWES, respectively) in seriously ill infants with diseases of unknown etiology. Here we report comparisons of analytic and diagnostic performance. Of 1,248 ill inpatient infants, 578 (46%) had diseases of unknown etiology. 213 infants (37% of those eligible) were enrolled within 96 h of admission. 24 infants (11%) were very ill and received ultra-rapid whole-genome sequencing (urWGS). The remaining infants were randomized, 95 to rWES and 94 to rWGS. The analytic performance of rWGS was superior to rWES, including variants likely to affect protein function, and ClinVar pathogenic/likely pathogenic variants (p < 0.0001). The diagnostic performance of rWGS and rWES were similar (18 diagnoses in 94 infants [19%] versus 19 diagnoses in 95 infants [20%], respectively), as was time to result (median 11.0 versus 11.2 days, respectively). However, the proportion diagnosed by urWGS (11 of 24 [46%]) was higher than rWES/rWGS (p = 0.004) and time to result was less (median 4.6 days, p < 0.0001). The incremental diagnostic yield of reflexing to trio after negative proband analysis was 0.7% (1 of 147). In conclusion, rapid genomic sequencing can be performed as a first-tier diagnostic test in inpatient infants. urWGS had the shortest time to result, which was important in unstable infants, and those in whom a genetic diagnosis was likely to impact immediate management. Further comparison of urWGS and rWES is warranted because genomic technologies and knowledge of variant pathogenicity are evolving rapidly.


Assuntos
Sequenciamento do Exoma , Sequenciamento Completo do Genoma , Testes Genéticos , Humanos , Lactente , Recém-Nascido
14.
Prenat Diagn ; 42(6): 705-716, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35141907

RESUMO

OBJECTIVE: To determine which types of fetal anomalies are associated with postnatal diagnoses of genetic diseases by genomic sequencing and to assess how prenatal genomic sequencing could affect clinical management. METHOD: This was a secondary analysis of the second Newborn Sequencing in Genomic Medicine and Public Health study that compared fetal imaging results in critically ill infants who had actionable versus negative postnatal genomic sequencing results. RESULTS: Of 213 infants who received genomic sequencing, 80 had available prenatal ultrasounds. Twenty-one (26%) of these were found to have genetic diseases by genomic sequencing. Fourteen (67%) of the 21 with genetic diseases had suspected anomalies prenatally, compared with 33 (56%) of 59 with negative results. Among fetuses with suspected anomalies, genetic diseases were 4.5 times more common in those with multiple anomalies and 6.7 times more common in those with anomalies of the extremities compared to those with negative results. Had the genetic diseases been diagnosed prenatally, clinical management would have been altered in 13 of 14. CONCLUSION: Critically ill infants with diagnostic genomic sequencing were more likely to have multiple anomalies and anomalies of the extremities on fetal imaging. Among almost all infants with suspected fetal anomalies and diagnostic genomic sequencing results, prenatal diagnosis would have likely altered clinical management.


Assuntos
Anormalidades Múltiplas , Estado Terminal , Anormalidades Múltiplas/diagnóstico , Feminino , Feto/anormalidades , Feto/diagnóstico por imagem , Genômica , Humanos , Lactente , Recém-Nascido , Gravidez , Diagnóstico Pré-Natal/métodos , Estudos Retrospectivos , Ultrassonografia Pré-Natal/métodos
16.
Crit Care Med ; 49(10): 1651-1663, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33938716

RESUMO

OBJECTIVES: Host gene expression signatures discriminate bacterial and viral infection but have not been translated to a clinical test platform. This study enrolled an independent cohort of patients to describe and validate a first-in-class host response bacterial/viral test. DESIGN: Subjects were recruited from 2006 to 2016. Enrollment blood samples were collected in an RNA preservative and banked for later testing. The reference standard was an expert panel clinical adjudication, which was blinded to gene expression and procalcitonin results. SETTING: Four U.S. emergency departments. PATIENTS: Six-hundred twenty-three subjects with acute respiratory illness or suspected sepsis. INTERVENTIONS: Forty-five-transcript signature measured on the BioFire FilmArray System (BioFire Diagnostics, Salt Lake City, UT) in ~45 minutes. MEASUREMENTS AND MAIN RESULTS: Host response bacterial/viral test performance characteristics were evaluated in 623 participants (mean age 46 yr; 45% male) with bacterial infection, viral infection, coinfection, or noninfectious illness. Performance of the host response bacterial/viral test was compared with procalcitonin. The test provided independent probabilities of bacterial and viral infection in ~45 minutes. In the 213-subject training cohort, the host response bacterial/viral test had an area under the curve for bacterial infection of 0.90 (95% CI, 0.84-0.94) and 0.92 (95% CI, 0.87-0.95) for viral infection. Independent validation in 209 subjects revealed similar performance with an area under the curve of 0.85 (95% CI, 0.78-0.90) for bacterial infection and 0.91 (95% CI, 0.85-0.94) for viral infection. The test had 80.1% (95% CI, 73.7-85.4%) average weighted accuracy for bacterial infection and 86.8% (95% CI, 81.8-90.8%) for viral infection in this validation cohort. This was significantly better than 68.7% (95% CI, 62.4-75.4%) observed for procalcitonin (p < 0.001). An additional cohort of 201 subjects with indeterminate phenotypes (coinfection or microbiology-negative infections) revealed similar performance. CONCLUSIONS: The host response bacterial/viral measured using the BioFire System rapidly and accurately discriminated bacterial and viral infection better than procalcitonin, which can help support more appropriate antibiotic use.


Assuntos
Infecções Bacterianas/diagnóstico , Técnicas de Laboratório Clínico/normas , Transcriptoma , Viroses/diagnóstico , Adulto , Infecções Bacterianas/genética , Biomarcadores/análise , Biomarcadores/sangue , Técnicas de Laboratório Clínico/métodos , Técnicas de Laboratório Clínico/estatística & dados numéricos , Serviço Hospitalar de Emergência/organização & administração , Serviço Hospitalar de Emergência/estatística & dados numéricos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Viroses/genética
17.
Genet Med ; 23(9): 1673-1680, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34007000

RESUMO

PURPOSE: To evaluate the impact of technically challenging variants on the implementation, validation, and diagnostic yield of commonly used clinical genetic tests. Such variants include large indels, small copy-number variants (CNVs), complex alterations, and variants in low-complexity or segmentally duplicated regions. METHODS: An interlaboratory pilot study used synthetic specimens to assess detection of challenging variant types by various next-generation sequencing (NGS)-based workflows. One well-performing workflow was further validated and used in clinician-ordered testing of more than 450,000 patients. RESULTS: In the interlaboratory study, only 2 of 13 challenging variants were detected by all 10 workflows, and just 3 workflows detected all 13. Limitations were also observed among 11 less-challenging indels. In clinical testing, 21.6% of patients carried one or more pathogenic variants, of which 13.8% (17,561) were classified as technically challenging. These variants were of diverse types, affecting 556 of 1,217 genes across hereditary cancer, cardiovascular, neurological, pediatric, reproductive carrier screening, and other indicated tests. CONCLUSION: The analytic and clinical sensitivity of NGS workflows can vary considerably, particularly for prevalent, technically challenging variants. This can have important implications for the design and validation of tests (by laboratories) and the selection of tests (by clinicians) for a wide range of clinical indications.


Assuntos
Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Criança , Variações do Número de Cópias de DNA/genética , Humanos , Mutação INDEL/genética , Projetos Piloto
19.
PLoS Genet ; 14(7): e1007394, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30001343

RESUMO

Preterm birth is a leading cause of morbidity and mortality in infants. Genetic and environmental factors play a role in the susceptibility to preterm birth, but despite many investigations, the genetic basis for preterm birth remain largely unknown. Our objective was to identify rare, possibly damaging, nucleotide variants in mothers from families with recurrent spontaneous preterm births (SPTB). DNA samples from 17 Finnish mothers who delivered at least one infant preterm were subjected to whole exome sequencing. All mothers were of northern Finnish origin and were from seven multiplex families. Additional replication samples of European origin consisted of 93 Danish sister pairs (and two sister triads), all with a history of a preterm delivery. Rare exonic variants (frequency <1%) were analyzed to identify genes and pathways likely to affect SPTB susceptibility. We identified rare, possibly damaging, variants in genes that were common to multiple affected individuals. The glucocorticoid receptor signaling pathway was the most significant (p<1.7e-8) with genes containing these variants in a subgroup of ten Finnish mothers, each having had 2-4 SPTBs. This pathway was replicated among the Danish sister pairs. A gene in this pathway, heat shock protein family A (Hsp70) member 1 like (HSPA1L), contains two likely damaging missense alleles that were found in four different Finnish families. One of the variants (rs34620296) had a higher frequency in cases compared to controls (0.0025 vs. 0.0010, p = 0.002) in a large preterm birth genome-wide association study (GWAS) consisting of mothers of general European ancestry. Sister pairs in replication samples also shared rare, likely damaging HSPA1L variants. Furthermore, in silico analysis predicted an additional phosphorylation site generated by rs34620296 that could potentially affect chaperone activity or HSPA1L protein stability. Finally, in vitro functional experiment showed a link between HSPA1L activity and decidualization. In conclusion, rare, likely damaging, variants in HSPA1L were observed in multiple families with recurrent SPTB.


Assuntos
Predisposição Genética para Doença , Proteínas de Choque Térmico HSP70/genética , Nascimento Prematuro/genética , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Exoma/genética , Feminino , Fibroblastos , Finlândia , Estudo de Associação Genômica Ampla , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Recém-Nascido , Masculino , Modelos Moleculares , Fosforilação/genética , Polimorfismo de Nucleotídeo Único , Gravidez , Receptores de Glucocorticoides/metabolismo , Recidiva , Fatores de Risco , Transdução de Sinais/genética , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA