Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 618(7967): 967-973, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37380694

RESUMO

Observational evidence shows the ubiquitous presence of ocean-emitted short-lived halogens in the global atmosphere1-3. Natural emissions of these chemical compounds have been anthropogenically amplified since pre-industrial times4-6, while, in addition, anthropogenic short-lived halocarbons are currently being emitted to the atmosphere7,8. Despite their widespread distribution in the atmosphere, the combined impact of these species on Earth's radiative balance remains unknown. Here we show that short-lived halogens exert a substantial indirect cooling effect at present (-0.13 ± 0.03 watts per square metre) that arises from halogen-mediated radiative perturbations of ozone (-0.24 ± 0.02 watts per square metre), compensated by those from methane (+0.09 ± 0.01 watts per square metre), aerosols (+0.03 ± 0.01 watts per square metre) and stratospheric water vapour (+0.011 ± 0.001 watts per square metre). Importantly, this substantial cooling effect has increased since 1750 by -0.05 ± 0.03 watts per square metre (61 per cent), driven by the anthropogenic amplification of natural halogen emissions, and is projected to change further (18-31 per cent by 2100) depending on climate warming projections and socioeconomic development. We conclude that the indirect radiative effect due to short-lived halogens should now be incorporated into climate models to provide a more realistic natural baseline of Earth's climate system.


Assuntos
Atmosfera , Mudança Climática , Modelos Climáticos , Clima , Temperatura Baixa , Halogênios , Atmosfera/análise , Atmosfera/química , Halogênios/análise , Hidrocarbonetos Halogenados , Oceanos e Mares , Água do Mar/análise , Água do Mar/química , Mudança Climática/estatística & dados numéricos , Atividades Humanas
2.
Proc Natl Acad Sci U S A ; 121(12): e2318716121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483991

RESUMO

Deep convection in the Asian summer monsoon is a significant transport process for lifting pollutants from the planetary boundary layer to the tropopause level. This process enables efficient injection into the stratosphere of reactive species such as chlorinated very-short-lived substances (Cl-VSLSs) that deplete ozone. Past studies of convective transport associated with the Asian summer monsoon have focused mostly on the south Asian summer monsoon. Airborne observations reported in this work identify the East Asian summer monsoon convection as an effective transport pathway that carried record-breaking levels of ozone-depleting Cl-VSLSs (mean organic chlorine from these VSLSs ~500 ppt) to the base of the stratosphere. These unique observations show total organic chlorine from VSLSs in the lower stratosphere over the Asian monsoon tropopause to be more than twice that previously reported over the tropical tropopause. Considering the recently observed increase in Cl-VSLS emissions and the ongoing strengthening of the East Asian summer monsoon under global warming, our results highlight that a reevaluation of the contribution of Cl-VSLS injection via the Asian monsoon to the total stratospheric chlorine budget is warranted.

3.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131938

RESUMO

The catalytic depletion of Antarctic stratospheric ozone is linked to anthropogenic emissions of chlorine and bromine. Despite its larger ozone-depleting efficiency, the contribution of ocean-emitted iodine to ozone hole chemistry has not been evaluated, due to the negligible iodine levels previously reported to reach the stratosphere. Based on the recently observed range (0.77 ± 0.1 parts per trillion by volume [pptv]) of stratospheric iodine injection, we use the Whole Atmosphere Community Climate Model to assess the role of iodine in the formation and recent past evolution of the Antarctic ozone hole. Our 1980-2015 simulations indicate that iodine can significantly impact the lower part of the Antarctic ozone hole, contributing, on average, 10% of the lower stratospheric ozone loss during spring (up to 4.2% of the total stratospheric column). We find that the inclusion of iodine advances the beginning and delays the closure stages of the ozone hole by 3 d to 5 d, increasing its area and mass deficit by 11% and 20%, respectively. Despite being present in much smaller amounts, and due to faster gas-phase photochemical reactivation, iodine can dominate (∼73%) the halogen-mediated lower stratospheric ozone loss during summer and early fall, when the heterogeneous reactivation of inorganic chlorine and bromine reservoirs is reduced. The stratospheric ozone destruction caused by 0.77 pptv of iodine over Antarctica is equivalent to that of 3.1 (4.6) pptv of biogenic very short-lived bromocarbons during spring (rest of sunlit period). The relative contribution of iodine to future stratospheric ozone loss is likely to increase as anthropogenic chlorine and bromine emissions decline following the Montreal Protocol.


Assuntos
Atmosfera/análise , Iodo/química , Perda de Ozônio , Ozônio Estratosférico/química , Poluentes Atmosféricos/química , Regiões Antárticas , Estações do Ano
4.
Proc Natl Acad Sci U S A ; 117(4): 1860-1866, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932452

RESUMO

Oceanic emissions of iodine destroy ozone, modify oxidative capacity, and can form new particles in the troposphere. However, the impact of iodine in the stratosphere is highly uncertain due to the lack of previous quantitative measurements. Here, we report quantitative measurements of iodine monoxide radicals and particulate iodine (Iy,part) from aircraft in the stratosphere. These measurements support that 0.77 ± 0.10 parts per trillion by volume (pptv) total inorganic iodine (Iy) is injected to the stratosphere. These high Iy amounts are indicative of active iodine recycling on ice in the upper troposphere (UT), support the upper end of recent Iy estimates (0 to 0.8 pptv) by the World Meteorological Organization, and are incompatible with zero stratospheric iodine injection. Gas-phase iodine (Iy,gas) in the UT (0.67 ± 0.09 pptv) converts to Iy,part sharply near the tropopause. In the stratosphere, IO radicals remain detectable (0.06 ± 0.03 pptv), indicating persistent Iy,part recycling back to Iy,gas as a result of active multiphase chemistry. At the observed levels, iodine is responsible for 32% of the halogen-induced ozone loss (bromine 40%, chlorine 28%), due primarily to previously unconsidered heterogeneous chemistry. Anthropogenic (pollution) ozone has increased iodine emissions since preindustrial times (ca. factor of 3 since 1950) and could be partly responsible for the continued decrease of ozone in the lower stratosphere. Increasing iodine emissions have implications for ozone radiative forcing and possibly new particle formation near the tropopause.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Radicais Livres/química , Iodo/análise , Ozônio/análise , Movimentos do Ar , Aeronaves , Radicais Livres/análise , Humanos
5.
Proc Natl Acad Sci U S A ; 117(9): 4505-4510, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071211

RESUMO

Dimethyl sulfide (DMS), emitted from the oceans, is the most abundant biological source of sulfur to the marine atmosphere. Atmospheric DMS is oxidized to condensable products that form secondary aerosols that affect Earth's radiative balance by scattering solar radiation and serving as cloud condensation nuclei. We report the atmospheric discovery of a previously unquantified DMS oxidation product, hydroperoxymethyl thioformate (HPMTF, HOOCH2SCHO), identified through global-scale airborne observations that demonstrate it to be a major reservoir of marine sulfur. Observationally constrained model results show that more than 30% of oceanic DMS emitted to the atmosphere forms HPMTF. Coincident particle measurements suggest a strong link between HPMTF concentration and new particle formation and growth. Analyses of these observations show that HPMTF chemistry must be included in atmospheric models to improve representation of key linkages between the biogeochemistry of the ocean, marine aerosol formation and growth, and their combined effects on climate.

6.
Geophys Res Lett ; 49(12): e2022GL097953, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35860422

RESUMO

Mercury, a global contaminant, enters the stratosphere through convective uplift, but its chemical cycling in the stratosphere is unknown. We report the first model of stratospheric mercury chemistry based on a novel photosensitized oxidation mechanism. We find two very distinct Hg chemical regimes in the stratosphere: in the upper stratosphere, above the ozone maximum concentration, Hg0 oxidation is initiated by photosensitized reactions, followed by second-step chlorine chemistry. In the lower stratosphere, ground-state Hg0 is oxidized by thermal reactions at much slower rates. This dichotomy arises due to the coincidence of the mercury absorption at 253.7 nm with the ozone Hartley band maximum at 254 nm. We also find that stratospheric Hg oxidation, controlled by chlorine and hydroxyl radicals, is much faster than previously assumed, but moderated by efficient photo-reduction of mercury compounds. Mercury lifetime shows a steep increase from hours in the upper-middle stratosphere to years in the lower stratosphere.

7.
Geophys Res Lett ; 48(4): e2020GL091125, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33776160

RESUMO

Many Chemistry-Climate Models (CCMs) include a simplified treatment of brominated very short-lived (VSLBr) species by assuming CH3Br as a surrogate for VSLBr. However, neglecting a comprehensive treatment of VSLBr in CCMs may yield an unrealistic representation of the associated impacts. Here, we use the Community Atmospheric Model with Chemistry (CAM-Chem) CCM to quantify the tropospheric and stratospheric changes between various VSLBr chemical approaches with increasing degrees of complexity (i.e., surrogate, explicit, and full). Our CAM-Chem results highlight the improved accuracy achieved by considering a detailed treatment of VSLBr photochemistry, including sea-salt aerosol dehalogenation and heterogeneous recycling on ice-crystals. Differences between the full and surrogate schemes maximize in the lowermost stratosphere and midlatitude free troposphere, resulting in a latitudinally dependent reduction of ∼1-7 DU in total ozone column and a ∼5%-15% decrease of the OH/HO2 ratio. We encourage all CCMs to include a complete chemical treatment of VSLBr in the troposphere and stratosphere.

8.
Angew Chem Int Ed Engl ; 59(19): 7605-7610, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-31833158

RESUMO

Mercury is a contaminant of global concern that is transported throughout the atmosphere as elemental mercury Hg0 and its oxidized forms HgI and HgII . The efficient gas-phase photolysis of HgII and HgI has recently been reported. However, whether the photolysis of HgII leads to other stable HgII species, to HgI , or to Hg0 and its competition with thermal reactivity remain unknown. Herein, we show that all oxidized forms of mercury rapidly revert directly and indirectly to Hg0 by photolysis. Results are based on non-adiabatic dynamics simulations, in which the photoproduct ratios were determined with maximum errors of 3%. We construct for the first time a complete quantitative mechanism of the photochemical and thermal conversion between atmospheric HgII , HgI , and Hg0 compounds. These results reveal new fundamental chemistry that has broad implications for the global atmospheric Hg cycle. Thus, photoreduction clearly competes with thermal oxidation, with Hg0 being the main photoproduct of HgII photolysis in the atmosphere, which significantly increases the lifetime of this metal in the environment.

9.
J Am Chem Soc ; 141(22): 8698-8702, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31117649

RESUMO

The efficient gas-phase photoreduction of Hg(II) has recently been shown to change mercury cycling significantly in the atmosphere and its deposition to the Earth's surface. However, the photolysis of key Hg(I) species within that cycle is currently not considered. Here we present ultraviolet-visible absorption spectra and cross-sections of HgCl, HgBr, HgI, and HgOH radicals, computed by high-level quantum-chemical methods, and show for the first time that gas-phase Hg(I) photoreduction can occur at time scales that eventually would influence the mercury chemistry in the atmosphere. These results provide new fundamental understanding of the photobehavior of Hg(I) radicals and show that the photolysis of HgBr increases atmospheric mercury lifetime, contributing to its global distribution in a significant way.

10.
Geophys Res Lett ; 45(18): 9919-9933, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32742043

RESUMO

Simulated stratospheric temperatures over the period 1979-2016 in models from the Chemistry-Climate Model Initiative (CCMI) are compared with recently updated and extended satellite observations. The multi-model mean global temperature trends over 1979- 2005 are -0.88 ± 0.23, -0.70 ± 0.16, and -0.50 ± 0.12 K decade-1 for the Stratospheric Sounding Unit (SSU) channels 3 (~40-50 km), 2 (~35-45 km), and 1 (~25-35 km), respectively. These are within the uncertainty bounds of the observed temperature trends from two reprocessed satellite datasets. In the lower stratosphere, the multi-model mean trend in global temperature for the Microwave Sounding Unit channel 4 (~13-22 km) is -0.25 ± 0.12 K decade-1 over 1979-2005, consistent with estimates from three versions of this satellite record. The simulated stratospheric temperature trends in CCMI models over 1979-2005 agree with the previous generation of chemistry-climate models. The models and an extended satellite dataset of SSU with the Advanced Microwave Sounding Unit-A show weaker global stratospheric cooling over 1998-2016 compared to the period of intensive ozone depletion (1979-1997). This is due to the reduction in ozone-induced cooling from the slow-down of ozone trends and the onset of ozone recovery since the late 1990s. In summary, the results show much better consistency between simulated and satellite observed stratospheric temperature trends than was reported by Thompson et al. (2012) for the previous versions of the SSU record and chemistry-climate models. The improved agreement mainly comes from updates to the satellite records; the range of simulated trends is comparable to the previous generation of models.

11.
Proc Natl Acad Sci U S A ; 112(45): 13789-93, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26504212

RESUMO

Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the NASA Airborne Tropical Tropopause Experiment campaigns. We combine aircraft observations and a chemistry-climate model to quantify the total bromine loading injected to the stratosphere. Surprisingly, despite differences in vertical transport between the Eastern and Western Pacific, VSLBr (organic + inorganic) contribute approximately similar amounts of bromine [∼6 (4-9) parts per trillion] [corrected] to the stratospheric input at the tropical tropopause. These levels of bromine cause substantial ozone depletion in the lower stratosphere, and any increases in future abundances (e.g., as a result of aquaculture) will lead to larger depletions.

12.
Nat Commun ; 14(1): 4045, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422475

RESUMO

Atmospheric methane is both a potent greenhouse gas and photochemically active, with approximately equal anthropogenic and natural sources. The addition of chlorine to the atmosphere has been proposed to mitigate global warming through methane reduction by increasing its chemical loss. However, the potential environmental impacts of such climate mitigation remain unexplored. Here, sensitivity studies are conducted to evaluate the possible effects of increasing reactive chlorine emissions on the methane budget, atmospheric composition and radiative forcing. Because of non-linear chemistry, in order to achieve a reduction in methane burden (instead of an increase), the chlorine atom burden needs to be a minimum of three times the estimated present-day burden. If the methane removal target is set to 20%, 45%, or 70% less global methane by 2050 compared to the levels in the Representative Concentration Pathway 8.5 scenario (RCP8.5), our modeling results suggest that additional chlorine fluxes of 630, 1250, and 1880 Tg Cl/year, respectively, are needed. The results show that increasing chlorine emissions also induces significant changes in other important climate forcers. Remarkably, the tropospheric ozone decrease is large enough that the magnitude of radiative forcing decrease is similar to that of methane. Adding 630, 1250, and 1880 Tg Cl/year to the RCP8.5 scenario, chosen to have the most consistent current-day trends of methane, will decrease the surface temperature by 0.2, 0.4, and 0.6 °C by 2050, respectively. The quantity and method in which the chlorine is added, its interactions with climate pathways, and the potential environmental impacts on air quality and ocean acidity, must be carefully considered before any action is taken.


Assuntos
Poluição do Ar , Ozônio , Cloro , Metano/análise , Clima , Poluição do Ar/análise , Ozônio/análise , Atmosfera/química , Halogênios
13.
J Geophys Res Atmos ; 127(21): e2021JD036142, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36590058

RESUMO

Open questions about the modulation of near-surface trace gas variability by stratosphere-troposphere tracer transport complicate efforts to identify anthropogenic sources of gases such as CFC-11 and N2O and disentangle them from dynamical influences. In this study, we explore one model's modulation of lower stratospheric tracer advection by the quasi-biennial oscillation (QBO) of stratospheric equatorial zonal-mean zonal winds at 50 hPa. We assess instances of coherent modulation versus disruption through phase unlocking with the seasonal cycle in the model and in observations. We quantify modeled advective contributions to the temporal rate of change of stratospheric CFC-11 and N2O at extratropical and high-latitudes by calculating a transformed Eulerian mean (TEM) budget across isentropic surfaces from a 10-member WACCM4 ensemble simulation. We find that positive interannual variability in seasonal tracer advection generally occurs in the easterly QBO phase, as in previous work, and briefly discuss physical mechanisms. Individual simulations of the 10-member ensemble display phase-unlocking disruptions from this general pattern due to seasonally varying synchronizations between the model's repeating 28-month QBO cycle and the 12-month seasonal cycle. We find that phase locking and unlocking patterns of tracer advection calculations inferred from observations fall within the envelope of the ensemble member results. Our study bolsters evidence for variability in the interannual stratospheric dynamical influence of CFC-11 near-surface concentrations by assessing the QBO modulation of lower stratospheric advection via synchronization with the annual cycle. It identifies a likely cause of variations in the QBO influence on tropospheric abundances.

14.
Nat Commun ; 13(1): 2768, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589794

RESUMO

CH4 is the most abundant reactive greenhouse gas and a complete understanding of its atmospheric fate is needed to formulate mitigation policies. Current chemistry-climate models tend to underestimate the lifetime of CH4, suggesting uncertainties in its sources and sinks. Reactive halogens substantially perturb the budget of tropospheric OH, the main CH4 loss. However, such an effect of atmospheric halogens is not considered in existing climate projections of CH4 burden and radiative forcing. Here, we demonstrate that reactive halogen chemistry increases the global CH4 lifetime by 6-9% during the 21st century. This effect arises from significant halogen-mediated decrease, mainly by iodine and bromine, in OH-driven CH4 loss that surpasses the direct Cl-induced CH4 sink. This increase in CH4 lifetime helps to reduce the gap between models and observations and results in a greater burden and radiative forcing during this century. The increase in CH4 burden due to halogens (up to 700 Tg or 8% by 2100) is equivalent to the observed atmospheric CH4 growth during the last three to four decades. Notably, the halogen-driven enhancement in CH4 radiative forcing is 0.05 W/m2 at present and is projected to increase in the future (0.06 W/m2 by 2100); such enhancement equals ~10% of present-day CH4 radiative forcing and one-third of N2O radiative forcing, the third-largest well-mixed greenhouse gas. Both direct (Cl-driven) and indirect (via OH) impacts of halogens should be included in future CH4 projections.

15.
J Geophys Res Atmos ; 127(22): e2021JD036390, 2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36589523

RESUMO

The Brewer-Dobson Circulation (BDC) determines the distribution of long-lived tracers in the stratosphere; therefore, their changes can be used to diagnose changes in the BDC. We evaluate decadal (2005-2018) trends of nitrous oxide (N2O) in two versions of the Whole Atmosphere Chemistry-Climate Model (WACCM) by comparing them with measurements from four Fourier transform infrared (FTIR) ground-based instruments, the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), and with a chemistry-transport model (CTM) driven by four different reanalyses. The limited sensitivity of the FTIR instruments can hide negative N2O trends in the mid-stratosphere because of the large increase in the lowermost stratosphere. When applying ACE-FTS measurement sampling on model datasets, the reanalyses from the European Center for Medium Range Weather Forecast (ECMWF) compare best with ACE-FTS, but the N2O trends are consistently exaggerated. The N2O trends obtained with WACCM disagree with those obtained from ACE-FTS, but the new WACCM version performs better than the previous above the Southern Hemisphere in the stratosphere. Model sensitivity tests show that the decadal N2O trends reflect changes in the stratospheric transport. We further investigate the N2O Transformed Eulerian Mean (TEM) budget in WACCM and in the CTM simulation driven by the latest ECMWF reanalysis. The TEM analysis shows that enhanced advection affects the stratospheric N2O trends in the Tropics. While no ideal observational dataset currently exists, this model study of N2O trends still provides new insights about the BDC and its changes because of the contribution from relevant sensitivity tests and the TEM analysis.

16.
Proc Natl Acad Sci U S A ; 105(14): 5307-12, 2008 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-18391218

RESUMO

We use a chemistry-climate model and new estimates of smoke produced by fires in contemporary cities to calculate the impact on stratospheric ozone of a regional nuclear war between developing nuclear states involving 100 Hiroshima-size bombs exploded in cities in the northern subtropics. We find column ozone losses in excess of 20% globally, 25-45% at midlatitudes, and 50-70% at northern high latitudes persisting for 5 years, with substantial losses continuing for 5 additional years. Column ozone amounts remain near or <220 Dobson units at all latitudes even after three years, constituting an extratropical "ozone hole." The resulting increases in UV radiation could impact the biota significantly, including serious consequences for human health. The primary cause for the dramatic and persistent ozone depletion is heating of the stratosphere by smoke, which strongly absorbs solar radiation. The smoke-laden air rises to the upper stratosphere, where removal mechanisms are slow, so that much of the stratosphere is ultimately heated by the localized smoke injections. Higher stratospheric temperatures accelerate catalytic reaction cycles, particularly those of odd-nitrogen, which destroy ozone. In addition, the strong convection created by rising smoke plumes alters the stratospheric circulation, redistributing ozone and the sources of ozone-depleting gases, including N(2)O and chlorofluorocarbons. The ozone losses predicted here are significantly greater than previous "nuclear winter/UV spring" calculations, which did not adequately represent stratospheric plume rise. Our results point to previously unrecognized mechanisms for stratospheric ozone depletion.


Assuntos
Modelos Químicos , Guerra Nuclear , Ozônio , Movimentos do Ar , Atmosfera , Clorofluorcarbonetos , Óxidos de Nitrogênio , Fumaça , Raios Ultravioleta
17.
Nat Commun ; 12(1): 5836, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611165

RESUMO

Polar stratospheric ozone has decreased since the 1970s due to anthropogenic emissions of chlorofluorocarbons and halons, resulting in the formation of an ozone hole over Antarctica. The effects of the ozone hole and the associated increase in incoming UV radiation on terrestrial and marine ecosystems are well established; however, the impact on geochemical cycles of ice photoactive elements, such as iodine, remains mostly unexplored. Here, we present the first iodine record from the inner Antarctic Plateau (Dome C) that covers approximately the last 212 years (1800-2012 CE). Our results show that the iodine concentration in ice remained constant during the pre-ozone hole period (1800-1974 CE) but has declined twofold since the onset of the ozone hole era (~1975 CE), closely tracking the total ozone evolution over Antarctica. Based on ice core observations, laboratory measurements and chemistry-climate model simulations, we propose that the iodine decrease since ~1975 is caused by enhanced iodine re-emission from snowpack due to the ozone hole-driven increase in UV radiation reaching the Antarctic Plateau. These findings suggest the potential for ice core iodine records from the inner Antarctic Plateau to be as an archive for past stratospheric ozone trends.

18.
Atmos Chem Phys ; 19(2): 921-940, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32793293

RESUMO

Climate models consistently predict an acceleration of the Brewer-Dobson circulation (BDC) due to climate change in the 21st century. However, the strength of this acceleration varies considerably among individual models, which constitutes a notable source of uncertainty for future climate projections. To shed more light upon the magnitude of this uncertainty and on its causes, we analyze the stratospheric mean age of air (AoA) of 10 climate projection simulations from the Chemistry Climate Model Initiative phase 1 (CCMI-I), covering the period between 1960 and 2100. In agreement with previous multi-model studies, we find a large model spread in the magnitude of the AoA trend over the simulation period. Differences between future and past AoA are found to be predominantly due to differences in mixing (reduced aging by mixing and recirculation) rather than differences in residual mean transport. We furthermore analyze the mixing efficiency, a measure of the relative strength of mixing for given residual mean transport, which was previously hypothesized to be a model constant. Here, the mixing efficiency is found to vary not only across models, but also over time in all models. Changes in mixing efficiency are shown to be closely related to changes in AoA and quantified to roughly contribute 10% to the long-term AoA decrease over the 21st century. Additionally, mixing efficiency variations are shown to considerably enhance model spread in AoA changes. To understand these mixing efficiency variations, we also present a consistent dynamical framework based on diffusive closure, which highlights the role of basic state potential vorticity gradients in controlling mixing efficiency and therefore aging by mixing.

19.
Atmos Chem Phys Discuss ; 19(15): 10087-10110, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632450

RESUMO

We have derived values of the Ultraviolet Index (UVI) at solar noon using the Tropospheric Ultraviolet Model (TUV) driven by ozone, temperature and aerosol fields from climate simulations of the first phase of the Chemistry-Climate Model Initiative (CCMI-1). Since clouds remain one of the largest uncertainties in climate projections, we simulated only the clear-sky UVI. We compared the modelled UVI climatologies against present-day climatological values of UVI derived from both satellite data (the OMI-Aura OMUVBd product) and ground-based measurements (from the NDACC network). Depending on the region, relative differences between the UVI obtained from CCMI/TUV calculations and the ground-based measurements ranged between -5.9% and 10.6%. We then calculated the UVI evolution throughout the 21st century for the four Representative Concentration Pathways (RCPs 2.6, 4.5, 6.0 and 8.5). Compared to 1960s values, we found an average increase in the UVI in 2100 (of 2-4%) in the tropical belt (30°N-30°S). For the mid-latitudes, we observed a 1.8 to 3.4 % increase in the Southern Hemisphere for RCP 2.6, 4.5 and 6.0, and found a 2.3% decrease in RCP 8.5. Higher increases in UVI are projected in the Northern Hemisphere except for RCP 8.5. At high latitudes, ozone recovery is well identified and induces a complete return of mean UVI levels to 1960 values for RCP 8.5 in the Southern Hemisphere. In the Northern Hemisphere, UVI levels in 2100 are higher by 0.5 to 5.5% for RCP 2.6, 4.5 and 6.0 and they are lower by 7.9% for RCP 8.5. We analysed the impacts of greenhouse gases (GHGs) and ozone-depleting substances (ODSs) on UVI from 1960 by comparing CCMI sensitivity simulations (1960-2100) with fixed GHGs or ODSs at their respective 1960 levels. As expected with ODS fixed at their 1960 levels, there is no large decrease in ozone levels and consequently no sudden increase in UVI levels. With fixed GHG, we observed a delayed return of ozone to 1960 values, with a corresponding pattern of change observed on UVI, and looking at the UVI difference between 2090s values and 1960s values, we found an 8 % increase in the tropical belt during the summer of each hemisphere. Finally we show that, while in the Southern Hemisphere the UVI is mainly driven by total ozone column, in the Northern Hemisphere both total ozone column and aerosol optical depth drive UVI levels, with aerosol optical depth having twice as much influence on the UVI as total ozone column does.

20.
J Geophys Res Atmos ; 123(20): 11377-11391, 2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32745154

RESUMO

Previous observational studies have found a persistent maximum in stratospheric water vapor (SWV) in the upper troposphere lower stratosphere (UTLS) confined by the upper-level anticyclone over the Asian summer monsoon region. This study investigates the simulation of SWV in the Whole Atmosphere Community Climate Model (WACCM). WACCM generally tends to simulate a SWV maximum over the central Pacific Ocean, but this bias is largely improved in the high vertical resolution version. The high vertical resolution model with increased vertical layers in the UTLS is found to have a less stratified UTLS over the central Pacific Ocean compared with the low vertical resolution model. It therefore simulates a steepened PV gradient over the central Pacific Ocean that better closes the upper-level anticyclone and confines the SWV within the enhanced transport barrier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA