Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 173(7): 1692-1704.e11, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29779949

RESUMO

Heritability is essential for understanding the biological causes of disease but requires laborious patient recruitment and phenotype ascertainment. Electronic health records (EHRs) passively capture a wide range of clinically relevant data and provide a resource for studying the heritability of traits that are not typically accessible. EHRs contain next-of-kin information collected via patient emergency contact forms, but until now, these data have gone unused in research. We mined emergency contact data at three academic medical centers and identified 7.4 million familial relationships while maintaining patient privacy. Identified relationships were consistent with genetically derived relatedness. We used EHR data to compute heritability estimates for 500 disease phenotypes. Overall, estimates were consistent with the literature and between sites. Inconsistencies were indicative of limitations and opportunities unique to EHR research. These analyses provide a validation of the use of EHRs for genetics and disease research.


Assuntos
Registros Eletrônicos de Saúde , Doenças Genéticas Inatas/genética , Algoritmos , Bases de Dados Factuais , Relações Familiares , Doenças Genéticas Inatas/patologia , Genótipo , Humanos , Linhagem , Fenótipo , Característica Quantitativa Herdável
2.
Nature ; 619(7970): 585-594, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468583

RESUMO

Understanding kidney disease relies on defining the complexity of cell types and states, their associated molecular profiles and interactions within tissue neighbourhoods1. Here we applied multiple single-cell and single-nucleus assays (>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has provided a high-resolution cellular atlas of 51 main cell types, which include rare and previously undescribed cell populations. The multi-omic approach provides detailed transcriptomic profiles, regulatory factors and spatial localizations spanning the entire kidney. We also define 28 cellular states across nephron segments and interstitium that were altered in kidney injury, encompassing cycling, adaptive (successful or maladaptive repair), transitioning and degenerative states. Molecular signatures permitted the localization of these states within injury neighbourhoods using spatial transcriptomics, while large-scale 3D imaging analysis (around 1.2 million neighbourhoods) provided corresponding linkages to active immune responses. These analyses defined biological pathways that are relevant to injury time-course and niches, including signatures underlying epithelial repair that predicted maladaptive states associated with a decline in kidney function. This integrated multimodal spatial cell atlas of healthy and diseased human kidneys represents a comprehensive benchmark of cellular states, neighbourhoods, outcome-associated signatures and publicly available interactive visualizations.


Assuntos
Perfilação da Expressão Gênica , Nefropatias , Rim , Análise de Célula Única , Transcriptoma , Humanos , Núcleo Celular/genética , Rim/citologia , Rim/lesões , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Transcriptoma/genética , Estudos de Casos e Controles , Imageamento Tridimensional
3.
Am J Hum Genet ; 110(11): 1950-1958, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37883979

RESUMO

As large-scale genomic screening becomes increasingly prevalent, understanding the influence of actionable results on healthcare utilization is key to estimating the potential long-term clinical impact. The eMERGE network sequenced individuals for actionable genes in multiple genetic conditions and returned results to individuals, providers, and the electronic health record. Differences in recommended health services (laboratory, imaging, and procedural testing) delivered within 12 months of return were compared among individuals with pathogenic or likely pathogenic (P/LP) findings to matched individuals with negative findings before and after return of results. Of 16,218 adults, 477 unselected individuals were found to have a monogenic risk for arrhythmia (n = 95), breast cancer (n = 96), cardiomyopathy (n = 95), colorectal cancer (n = 105), or familial hypercholesterolemia (n = 86). Individuals with P/LP results more frequently received services after return (43.8%) compared to before return (25.6%) of results and compared to individuals with negative findings (24.9%; p < 0.0001). The annual cost of qualifying healthcare services increased from an average of $162 before return to $343 after return of results among the P/LP group (p < 0.0001); differences in the negative group were non-significant. The mean difference-in-differences was $149 (p < 0.0001), which describes the increased cost within the P/LP group corrected for cost changes in the negative group. When stratified by individual conditions, significant cost differences were observed for arrhythmia, breast cancer, and cardiomyopathy. In conclusion, less than half of individuals received billed health services after monogenic return, which modestly increased healthcare costs for payors in the year following return.


Assuntos
Neoplasias da Mama , Cardiomiopatias , Adulto , Humanos , Feminino , Estudos Prospectivos , Aceitação pelo Paciente de Cuidados de Saúde , Arritmias Cardíacas , Neoplasias da Mama/genética , Cardiomiopatias/genética
4.
Kidney Int ; 105(4): 717-730, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38154557

RESUMO

Some patients diagnosed with benign IgA nephropathy (IgAN) develop a progressive clinical course, not predictable by known clinical or histopathological parameters. To assess if gene expression can differentiate between progressors and non-progressors with assumed benign IgAN, we tested microdissected glomeruli from archival kidney biopsy sections from adult patients with stable clinical remission (21 non-progressors) or from 15 patients that had undergone clinical progression within a 25-year time frame. Based on 1 240 differentially expressed genes from patients with suitable sequencing results, we identified eight IgAN progressor and nine non-progressor genes using a two-component classifier. These genes, including APOL5 and ZXDC, predicted disease progression with 88% accuracy, 75% sensitivity and 100% specificity on average 21.6 years before progressive disease was clinically documented. APOL lipoproteins are associated with inflammation, autophagy and kidney disease while ZXDC is a zinc-finger transcription factor modulating adaptive immunity. Ten genes from our transcriptomics data overlapped with an external genome wide association study dataset, although the gene set enrichment test was not statistically significant. We also identified 45 drug targets in the DrugBank database, including angiotensinogen, a target of sparsentan (dual antagonist of the endothelin type A receptor and the angiotensin II type 1 receptor) currently investigated for IgAN treatment. Two validation cohorts were used for substantiating key results, one by immunohistochemistry and the other by nCounter technology. Thus, glomerular mRNA sequencing from diagnostic kidney biopsies from patients with assumed benign IgAN can differentiate between future progressors and non-progressors at the time of diagnosis.


Assuntos
Glomerulonefrite por IGA , Adulto , Humanos , Glomerulonefrite por IGA/diagnóstico , Glomerulonefrite por IGA/tratamento farmacológico , Glomerulonefrite por IGA/genética , Estudo de Associação Genômica Ampla , Glomérulos Renais/patologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica
5.
Kidney Int ; 106(1): 115-125, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38521406

RESUMO

Cardiovascular disease, infection, malignancy, and thromboembolism are major causes of morbidity and mortality in kidney transplant recipients (KTR). Prospectively identifying monogenic conditions associated with post-transplant complications may enable personalized management. Therefore, we developed a transplant morbidity panel (355 genes) associated with major post-transplant complications including cardiometabolic disorders, immunodeficiency, malignancy, and thrombophilia. This gene panel was then evaluated using exome sequencing data from 1590 KTR. Additionally, genes associated with monogenic kidney and genitourinary disorders along with American College of Medical Genetics (ACMG) secondary findings v3.2 were annotated. Altogether, diagnostic variants in 37 genes associated with Mendelian kidney and genitourinary disorders were detected in 9.9% (158/1590) of KTR; 25.9% (41/158) had not been clinically diagnosed. Moreover, the transplant morbidity gene panel detected diagnostic variants for 56 monogenic disorders in 9.1% KTRs (144/1590). Cardiovascular disease, malignancy, immunodeficiency, and thrombophilia variants were detected in 5.1% (81), 2.1% (34), 1.8% (29) and 0.2% (3) among 1590 KTRs, respectively. Concordant phenotypes were present in half of these cases. Reviewing implications for transplant care, these genetic findings would have allowed physicians to set specific risk factor targets in 6.3% (9/144), arrange intensive surveillance in 97.2% (140/144), utilize preventive measures in 13.2% (19/144), guide disease-specific therapy in 63.9% (92/144), initiate specialty referral in 90.3% (130/144) and alter immunosuppression in 56.9% (82/144). Thus, beyond diagnostic testing for kidney disorders, sequence annotation identified monogenic disorders associated with common post-transplant complications in 9.1% of KTR, with important clinical implications. Incorporating genetic diagnostics for transplant morbidities would enable personalized management in pre- and post-transplant care.


Assuntos
Sequenciamento do Exoma , Testes Genéticos , Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Testes Genéticos/métodos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Complicações Pós-Operatórias/genética , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Transplantados/estatística & dados numéricos , Idoso , Predisposição Genética para Doença
6.
Am J Transplant ; 24(3): 498-502, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37852577

RESUMO

Fibronectin glomerulopathy is a rare inherited kidney disease, characterized by abnormal accumulation of fibronectin in the glomeruli. We report an exceptional case of recurrent fibronectin glomerulopathy first diagnosed in the kidney allograft. The presence of IgA staining in the native kidney biopsy and the reported family history of IgA nephropathy had led to initial pretransplant diagnosis of IgA nephropathy. At 4.5 years posttransplant, the patient presented with kidney insufficiency and minimal proteinuria. The allograft biopsy revealed glomerular deposits with very weak staining for immunoglobulins and vague filamentous material. Immunostaining for fibronectin was positive, and genetic studies showed a variant of unknown significance in the fibronectin 1 gene. Proteomic analyses of the glomeruli in the native kidney biopsy demonstrated large amount of fibronectin with abundant accumulation of the peptide synthesized by the detected variant. These findings established the diagnosis of recurrent fibronectin glomerulopathy secondary to a novel variant in the fibronectin 1 gene. This report sheds light on recurrent fibronectin glomerulopathy in the allograft, highlights the diagnostic pitfalls of the disease, and underscores the importance of pathologic-genomic correlation to establish the correct diagnosis.


Assuntos
Glomerulonefrite por IGA , Glomerulonefrite Membranoproliferativa , Humanos , Glomerulonefrite por IGA/diagnóstico , Glomerulonefrite por IGA/genética , Fibronectinas/genética , Proteômica , Rim , Genômica , Aloenxertos
7.
Am J Transplant ; 24(6): 1003-1015, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331047

RESUMO

African American (AA) kidney recipients have a higher risk of allograft rejection and failure compared to non-AAs, but to what extent these outcomes are due to genetic versus environmental effects is currently unknown. Herein, we tested the effects of recipient self-reported race versus genetic proportion of African ancestry (pAFR), and neighborhood socioeconomic status (SES) on kidney allograft outcomes in multiethnic kidney transplant recipients from Columbia University (N = 1083) and the University of Pennsylvania (N = 738). All participants were genotyped with SNP arrays to estimate genetic admixture proportions. US census tract variables were used to analyze the effect of neighborhood factors. In both cohorts, self-reported recipient AA race and pAFR were individually associated with increased risk of rejection and failure after adjustment for known clinical risk factors and neighborhood SES factors. Joint analysis confirmed that self-reported recipient AA race and pAFR were both associated with a higher risk of allograft rejection (AA: HR 1.61 (1.31-1.96), P = 4.05E-06; pAFR: HR 1.90 (1.46-2.48), P = 2.40E-06) and allograft failure (AA: HR 1.52 (1.18-1.97), P = .001; pAFR: HR 1.70 (1.22-2.35), P = .002). Further research is needed to disentangle the role of genetics versus environmental, social, and structural factors contributing to poor transplantation outcomes in kidney recipients of African ancestry.


Assuntos
Rejeição de Enxerto , Sobrevivência de Enxerto , Transplante de Rim , Autorrelato , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Rejeição de Enxerto/genética , Rejeição de Enxerto/etiologia , Sobrevivência de Enxerto/genética , Fatores de Risco , Adulto , Prognóstico , Seguimentos , População Urbana , Negro ou Afro-Americano/genética , Falência Renal Crônica/cirurgia , Falência Renal Crônica/genética , Transplantados , Etnicidade/genética , Características da Vizinhança , Taxa de Filtração Glomerular , Testes de Função Renal , Estudos de Coortes
8.
Funct Integr Genomics ; 24(3): 104, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764005

RESUMO

Accurate estimation of population allele frequency (AF) is crucial for gene discovery and genetic diagnostics. However, determining AF for frameshift-inducing small insertions and deletions (indels) faces challenges due to discrepancies in mapping and variant calling methods. Here, we propose an innovative approach to assess indel AF. We developed CRAFTS-indels (Calculating Regional Allele Frequency Targeting Small indels), an algorithm that combines AF of distinct indels within a given region and provides "regional AF" (rAF). We tested and validated CRAFTS-indels using three independent datasets: gnomAD v2 (n=125,748 samples), an internal dataset (IGM; n=39,367), and the UK BioBank (UKBB; n=469,835). By comparing rAF against standard AF, we identified rare indels with rAF exceeding standard AF (sAF≤10-4 and rAF>10-4) as "rAF-hi" indels. Notably, a high percentage of rare indels were "rAF-hi", with a higher proportion in gnomAD v2 (11-20%) and IGM (11-22%) compared to the UKBB (5-9% depending on the CRAFTS-indels' parameters). Analysis of the overlap of regions based on their rAF with low complexity regions and with ClinVar classification supported the pertinence of rAF. Using the internal dataset, we illustrated the utility of CRAFTS-indel in the analysis of de novo variants and the potential negative impact of rAF-hi indels in gene discovery. In summary, annotation of indels with cohort specific rAF can be used to handle some of the limitations of current annotation pipelines and facilitate detection of novel gene disease associations. CRAFTS-indels offers a user-friendly approach to providing rAF annotation. It can be integrated into public databases such as gnomAD, UKBB and used by ClinVar to revise indel classifications.


Assuntos
Frequência do Gene , Mutação INDEL , Humanos , Algoritmos
9.
PLoS Genet ; 17(6): e1009534, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34086673

RESUMO

Assumptions are made about the genetic model of single nucleotide polymorphisms (SNPs) when choosing a traditional genetic encoding: additive, dominant, and recessive. Furthermore, SNPs across the genome are unlikely to demonstrate identical genetic models. However, running SNP-SNP interaction analyses with every combination of encodings raises the multiple testing burden. Here, we present a novel and flexible encoding for genetic interactions, the elastic data-driven genetic encoding (EDGE), in which SNPs are assigned a heterozygous value based on the genetic model they demonstrate in a dataset prior to interaction testing. We assessed the power of EDGE to detect genetic interactions using 29 combinations of simulated genetic models and found it outperformed the traditional encoding methods across 10%, 30%, and 50% minor allele frequencies (MAFs). Further, EDGE maintained a low false-positive rate, while additive and dominant encodings demonstrated inflation. We evaluated EDGE and the traditional encodings with genetic data from the Electronic Medical Records and Genomics (eMERGE) Network for five phenotypes: age-related macular degeneration (AMD), age-related cataract, glaucoma, type 2 diabetes (T2D), and resistant hypertension. A multi-encoding genome-wide association study (GWAS) for each phenotype was performed using the traditional encodings, and the top results of the multi-encoding GWAS were considered for SNP-SNP interaction using the traditional encodings and EDGE. EDGE identified a novel SNP-SNP interaction for age-related cataract that no other method identified: rs7787286 (MAF: 0.041; intergenic region of chromosome 7)-rs4695885 (MAF: 0.34; intergenic region of chromosome 4) with a Bonferroni LRT p of 0.018. A SNP-SNP interaction was found in data from the UK Biobank within 25 kb of these SNPs using the recessive encoding: rs60374751 (MAF: 0.030) and rs6843594 (MAF: 0.34) (Bonferroni LRT p: 0.026). We recommend using EDGE to flexibly detect interactions between SNPs exhibiting diverse action.


Assuntos
Modelos Genéticos , Catarata/genética , Conjuntos de Dados como Assunto , Diabetes Mellitus Tipo 2/genética , Frequência do Gene , Estudo de Associação Genômica Ampla , Glaucoma/genética , Humanos , Hipertensão/genética , Degeneração Macular/genética , Fenótipo , Polimorfismo de Nucleotídeo Único
10.
J Am Soc Nephrol ; 34(5): 909-919, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758113

RESUMO

SIGNIFICANCE STATEMENT: APOL1 high-risk genotypes confer a significant risk of kidney disease, but variability in patient outcomes suggests the presence of modifiers of the APOL1 effect. We show that a diverse population of CKD patients with high-risk APOL1 genotypes have an increased lifetime risk of kidney failure and higher eGFR decline rates, with a graded risk among specific high-risk genotypes. CKD patients with high-risk APOL1 genotypes have a lower diagnostic yield for monogenic kidney disease. Exome sequencing revealed enrichment of rare missense variants within the inflammasome pathway modifying the effect of APOL1 risk genotypes, which may explain some clinical heterogeneity. BACKGROUND: APOL1 genotype has significant effects on kidney disease development and progression that vary among specific causes of kidney disease, suggesting the presence of effect modifiers. METHODS: We assessed the risk of kidney failure and the eGFR decline rate in patients with CKD carrying high-risk ( N =239) and genetically matched low-risk ( N =1187) APOL1 genotypes. Exome sequencing revealed monogenic kidney diseases. Exome-wide association studies and gene-based and gene set-based collapsing analyses evaluated genetic modifiers of the effect of APOL1 genotype on CKD. RESULTS: Compared with genetic ancestry-matched patients with CKD with low-risk APOL1 genotypes, those with high-risk APOL1 genotypes had a higher risk of kidney failure (Hazard Ratio [HR]=1.58), a higher decline in eGFR (6.55 versus 3.63 ml/min/1.73 m 2 /yr), and were younger at time of kidney failure (45.1 versus 53.6 years), with the G1/G1 genotype demonstrating the highest risk. The rate for monogenic kidney disorders was lower among patients with CKD with high-risk APOL1 genotypes (2.5%) compared with those with low-risk genotypes (6.7%). Gene set analysis identified an enrichment of rare missense variants in the inflammasome pathway in individuals with high-risk APOL1 genotypes and CKD (odds ratio=1.90). CONCLUSIONS: In this genetically matched cohort, high-risk APOL1 genotypes were associated with an increased risk of kidney failure and eGFR decline rate, with a graded risk between specific high-risk genotypes and a lower rate of monogenic kidney disease. Rare missense variants in the inflammasome pathway may act as genetic modifiers of APOL1 effect on kidney disease.


Assuntos
Apolipoproteína L1 , Insuficiência Renal Crônica , Humanos , Apolipoproteína L1/genética , Inflamassomos , Insuficiência Renal Crônica/genética , Genótipo , Risco , Predisposição Genética para Doença , Fatores de Risco
11.
J Am Soc Nephrol ; 34(4): 607-618, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302597

RESUMO

SIGNIFICANCE STATEMENT: Pathogenic structural genetic variants, also known as genomic disorders, have been associated with pediatric CKD. This study extends those results across the lifespan, with genomic disorders enriched in both pediatric and adult patients compared with controls. In the Chronic Renal Insufficiency Cohort study, genomic disorders were also associated with lower serum Mg, lower educational performance, and a higher risk of death. A phenome-wide association study confirmed the link between kidney disease and genomic disorders in an unbiased way. Systematic detection of genomic disorders can provide a molecular diagnosis and refine prediction of risk and prognosis. BACKGROUND: Genomic disorders (GDs) are associated with many comorbid outcomes, including CKD. Identification of GDs has diagnostic utility. METHODS: We examined the prevalence of GDs among participants in the Chronic Kidney Disease in Children (CKiD) cohort II ( n =248), Chronic Renal Insufficiency Cohort (CRIC) study ( n =3375), Columbia University CKD Biobank (CU-CKD; n =1986), and the Family Investigation of Nephropathy and Diabetes (FIND; n =1318) compared with 30,746 controls. We also performed a phenome-wide association analysis (PheWAS) of GDs in the electronic MEdical Records and GEnomics (eMERGE; n =11,146) cohort. RESULTS: We found nine out of 248 (3.6%) CKiD II participants carried a GD, replicating prior findings in pediatric CKD. We also identified GDs in 72 out of 6679 (1.1%) adult patients with CKD in the CRIC, CU-CKD, and FIND cohorts, compared with 199 out of 30,746 (0.65%) GDs in controls (OR, 1.7; 95% CI, 1.3 to 2.2). Among adults with CKD, we found recurrent GDs at the 1q21.1, 16p11.2, 17q12, and 22q11.2 loci. The 17q12 GD (diagnostic of renal cyst and diabetes syndrome) was most frequent, present in 1:252 patients with CKD and diabetes. In the PheWAS, dialysis and neuropsychiatric phenotypes were the top associations with GDs. In CRIC participants, GDs were associated with lower serum magnesium, lower educational achievement, and higher mortality risk. CONCLUSION: Undiagnosed GDs are detected both in children and adults with CKD. Identification of GDs in these patients can enable a precise genetic diagnosis, inform prognosis, and help stratify risk in clinical studies. GDs could also provide a molecular explanation for nephropathy and comorbidities, such as poorer neurocognition for a subset of patients.


Assuntos
Longevidade , Insuficiência Renal Crônica , Humanos , Estudos de Coortes , Estudos Prospectivos , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/complicações , Genômica , Progressão da Doença , Fatores de Risco
12.
Kidney Int ; 104(6): 1113-1123, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37783446

RESUMO

Confounding is a major limitation of observational studies. Mendelian randomization (MR) is a powerful study design that uses genetic variants as instrumental variables to enable examination of the causal effect of an exposure on an outcome in observational data. With the emergence of large-scale genome-wide association studies in nephrology over the past decade, MR has become a popular method to establish causal inferences. However, MR is a complex and challenging methodology that requires careful consideration to ensure robust results. This review article aims to summarize the basic concepts of MR, its application and relevance in nephrology, and the methodological challenges and limitations as well as discuss the current guidelines for design and reporting. With reference to a clinically relevant example of examining the causal relationship between the estimated glomerular filtration rate and cancer, this review outlines the key steps to conducting an MR study, including the key considerations and potential pitfalls at each step. These include defining the clinical question, selecting the data sources, identifying and refining appropriate genetic variants by considering linkage disequilibrium and associations with potential confounders, harmonization of variants across data sets, validation of the genetic instrument by assessing its strength, estimation of the causal effects, confirming the validity of the findings, and interpreting and reporting results.


Assuntos
Nefrologistas , Nefrologia , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Desequilíbrio de Ligação
13.
Am J Hum Genet ; 106(4): 513-524, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32243819

RESUMO

The identification of functional regions in the noncoding human genome is difficult but critical in order to gain understanding of the role noncoding variation plays in gene regulation in human health and disease. We describe here a co-localization approach that aims to identify constrained sequences that co-localize with tissue- or cell-type-specific regulatory regions, and we show that the resulting score is particularly well suited for the identification of rare regulatory variants. For 127 tissues and cell types in the ENCODE/Roadmap Epigenomics Project, we provide catalogs of putative tissue- or cell-type-specific regulatory regions under sequence constraint. We use the newly developed co-localization score for brain tissues to score de novo mutations in whole genomes from 1,902 individuals affected with autism spectrum disorder (ASD) and their unaffected siblings in the Simons Simplex Collection. We show that noncoding de novo mutations near genes co-expressed in midfetal brain with high confidence ASD risk genes, and near FMRP gene targets are more likely to be in co-localized regions if they occur in ASD probands versus in their unaffected siblings. We also observed a similar enrichment for mutations near lincRNAs, previously shown to co-express with ASD risk genes. Additionally, we provide strong evidence that prioritized de novo mutations in autism probands point to a small set of well-known ASD genes, the disruption of which produces relevant mouse phenotypes such as abnormal social investigation and abnormal discrimination/associative learning, unlike the de novo mutations in unaffected siblings. The genome-wide co-localization results are available online.


Assuntos
Regulação da Expressão Gênica/genética , Genoma Humano/genética , Transtorno do Espectro Autista/genética , Epigenômica/métodos , Humanos , Mutação/genética , Fenótipo , Irmãos , Sequenciamento Completo do Genoma/métodos
14.
Genet Med ; 25(12): 100983, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37746849

RESUMO

PURPOSE: Previous work identified rare variants in DSTYK associated with human congenital anomalies of the kidney and urinary tract (CAKUT). Here, we present a series of mouse and human studies to clarify the association, penetrance, and expressivity of DSTYK variants. METHODS: We phenotypically characterized Dstyk knockout mice of 3 separate inbred backgrounds and re-analyzed the original family segregating the DSTYK c.654+1G>A splice-site variant (referred to as "SSV" below). DSTYK loss of function (LOF) and SSVs were annotated in individuals with CAKUT, epilepsy, or amyotrophic lateral sclerosis vs controls. A phenome-wide association study analysis was also performed using United Kingdom Biobank (UKBB) data. RESULTS: Results demonstrate ∼20% to 25% penetrance of obstructive uropathy, at least, in C57BL/6J and FVB/NJ Dstyk-/- mice. Phenotypic penetrance increased to ∼40% in C3H/HeJ mutants, with mild-to-moderate severity. Re-analysis of the original family segregating the rare SSV showed low penetrance (43.8%) and no alternative genetic causes for CAKUT. LOF DSTYK variants burden showed significant excess for CAKUT and epilepsy vs controls and an exploratory phenome-wide association study supported association with neurological disorders. CONCLUSION: These data support causality for DSTYK LOF variants and highlights the need for large-scale sequencing studies (here >200,000 cases) to accurately assess causality for genes and variants to lowly penetrant traits with common population prevalence.


Assuntos
Epilepsia , Sistema Urinário , Anormalidades Urogenitais , Animais , Camundongos , Humanos , Penetrância , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Anormalidades Urogenitais/genética , Rim/anormalidades , Fatores de Risco , Epilepsia/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
15.
J Allergy Clin Immunol ; 150(5): 1086-1096, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35595084

RESUMO

BACKGROUND: Asthma is the most common chronic condition in children and the third leading cause of hospitalization in pediatrics. The genome-wide association study catalog reports 140 studies with genome-wide significance. A polygenic risk score (PRS) with predictive value across ancestries has not been evaluated for this important trait. OBJECTIVES: This study aimed to train and validate a PRS relying on genetic determinants for asthma to provide predictions for disease occurrence in pediatric cohorts of diverse ancestries. METHODS: This study applied a Bayesian regression framework method using the Trans-National Asthma Genetic Consortium genome-wide association study summary statistics to derive a multiancestral PRS score, used one Electronic Medical Records and Genomics (eMERGE) cohort as a training set, used a second independent eMERGE cohort to validate the score, and used the UK Biobank data to replicate the findings. A phenome-wide association study was performed using the PRS to identify shared genetic etiology with other phenotypes. RESULTS: The multiancestral asthma PRS was associated with asthma in the 2 pediatric validation datasets. Overall, the multiancestral asthma PRS has an area under the curve (AUC) of 0.70 (95% CI, 0.69-0.72) in the pediatric validation 1 and AUC of 0.66 (0.65-0.66) in the pediatric validation 2 datasets. We found significant discrimination across pediatric subcohorts of European (AUC, 95% CI, 0.60 and 0.66), African (AUC, 95% CI, 0.61 and 0.66), admixed American (AUC, 0.64 and 0.70), Southeast Asian (AUC, 0.65), and East Asian (AUC, 0.73) ancestry. Pediatric participants with the top 5% PRS had 2.80 to 5.82 increased odds of asthma compared to the bottom 5% across the training, validation 1, and validation 2 cohorts when adjusted for ancestry. Phenome-wide association study analysis confirmed the strong association of the identified PRS with asthma (odds ratio, 2.71, PFDR = 3.71 × 10-65) and related phenotypes. CONCLUSIONS: A multiancestral PRS for asthma based on Bayesian posterior genomic effect sizes identifies increased odds of pediatric asthma.


Assuntos
Asma , Estudo de Associação Genômica Ampla , Humanos , Criança , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Teorema de Bayes , Fatores de Risco , Asma/genética
16.
Am J Med Genet C Semin Med Genet ; 190(3): 289-301, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36161695

RESUMO

Studies have shown that as many as 1 in 10 adults with chronic kidney disease has a monogenic form of disease. However, genetic services in adult nephrology are limited. An adult Kidney Genetics Clinic was established within the nephrology division at a large urban academic medical center to increase access to genetic services and testing in adults with kidney disease. Between June 2019 and December 2021, a total of 363 patients were referred to the adult Kidney Genetics Clinic. Of those who completed genetic testing, a positive diagnostic finding was identified in 27.1%, a candidate diagnostic finding was identified in 6.7% of patients, and a nondiagnostic positive finding was identified in an additional 8.6% of patients, resulting in an overall yield of 42.4% for clinically relevant genetic findings in tested patients. A genetic diagnosis had implications for medical management, family member testing, and eligibility for clinical trials. With the utilization of telemedicine, genetic services reached a diverse geographic and patient population. Genetic education efforts were integral to the clinic's success, as they increased visibility and helped providers identify appropriate referrals. Ongoing access to genomic services will remain a fundamental component of patient care in adults with kidney disease.


Assuntos
Nefrologia , Insuficiência Renal Crônica , Adulto , Humanos , Serviços em Genética , Nefrologia/métodos , Testes Genéticos/métodos , Encaminhamento e Consulta , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/terapia
17.
Kidney Int ; 102(3): 476-478, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35988936

RESUMO

New genome-wide meta-analysis for longitudinal kidney function decline identified several genetic loci related to kidney disease progression. The study illustrated the complexity of modeling longitudinal traits in genome-wide association studies and highlighted the issue of a collider bias that can be introduced when a kidney disease progression phenotype is adjusted for baseline kidney function. Herein, we briefly outline the key findings of this study, their limitations, and implications for future studies.


Assuntos
Estudo de Associação Genômica Ampla , Nefropatias , Progressão da Doença , Loci Gênicos , Humanos , Rim , Nefropatias/genética , Fenótipo , Polimorfismo de Nucleotídeo Único
18.
N Engl J Med ; 380(20): 1918-1928, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31091373

RESUMO

BACKGROUND: In the context of kidney transplantation, genomic incompatibilities between donor and recipient may lead to allosensitization against new antigens. We hypothesized that recessive inheritance of gene-disrupting variants may represent a risk factor for allograft rejection. METHODS: We performed a two-stage genetic association study of kidney allograft rejection. In the first stage, we performed a recessive association screen of 50 common gene-intersecting deletion polymorphisms in a cohort of kidney transplant recipients. In the second stage, we replicated our findings in three independent cohorts of donor-recipient pairs. We defined genomic collision as a specific donor-recipient genotype combination in which a recipient who was homozygous for a gene-intersecting deletion received a transplant from a nonhomozygous donor. Identification of alloantibodies was performed with the use of protein arrays, enzyme-linked immunosorbent assays, and Western blot analyses. RESULTS: In the discovery cohort, which included 705 recipients, we found a significant association with allograft rejection at the LIMS1 locus represented by rs893403 (hazard ratio with the risk genotype vs. nonrisk genotypes, 1.84; 95% confidence interval [CI], 1.35 to 2.50; P = 9.8×10-5). This effect was replicated under the genomic-collision model in three independent cohorts involving a total of 2004 donor-recipient pairs (hazard ratio, 1.55; 95% CI, 1.25 to 1.93; P = 6.5×10-5). In the combined analysis (discovery cohort plus replication cohorts), the risk genotype was associated with a higher risk of rejection than the nonrisk genotype (hazard ratio, 1.63; 95% CI, 1.37 to 1.95; P = 4.7×10-8). We identified a specific antibody response against LIMS1, a kidney-expressed protein encoded within the collision locus. The response involved predominantly IgG2 and IgG3 antibody subclasses. CONCLUSIONS: We found that the LIMS1 locus appeared to encode a minor histocompatibility antigen. Genomic collision at this locus was associated with rejection of the kidney allograft and with production of anti-LIMS1 IgG2 and IgG3. (Funded by the Columbia University Transplant Center and others.).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Variações do Número de Cópias de DNA , Rejeição de Enxerto/genética , Transplante de Rim , Proteínas com Domínio LIM/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Estudos de Coortes , Estudos de Associação Genética , Genótipo , Antígenos HLA/genética , Teste de Histocompatibilidade , Humanos , Imunoglobulina G/sangue , Proteínas com Domínio LIM/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Polimorfismo de Nucleotídeo Único , Doadores de Tecidos
19.
N Engl J Med ; 380(2): 142-151, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30586318

RESUMO

BACKGROUND: Exome sequencing is emerging as a first-line diagnostic method in some clinical disciplines, but its usefulness has yet to be examined for most constitutional disorders in adults, including chronic kidney disease, which affects more than 1 in 10 persons globally. METHODS: We conducted exome sequencing and diagnostic analysis in two cohorts totaling 3315 patients with chronic kidney disease. We assessed the diagnostic yield and, among the patients for whom detailed clinical data were available, the clinical implications of diagnostic and other medically relevant findings. RESULTS: In all, 3037 patients (91.6%) were over 21 years of age, and 1179 (35.6%) were of self-identified non-European ancestry. We detected diagnostic variants in 307 of the 3315 patients (9.3%), encompassing 66 different monogenic disorders. Of the disorders detected, 39 (59%) were found in only a single patient. Diagnostic variants were detected across all clinically defined categories, including congenital or cystic renal disease (127 of 531 patients [23.9%]) and nephropathy of unknown origin (48 of 281 patients [17.1%]). Of the 2187 patients assessed, 34 (1.6%) had genetic findings for medically actionable disorders that, although unrelated to their nephropathy, would also lead to subspecialty referral and inform renal management. CONCLUSIONS: Exome sequencing in a combined cohort of more than 3000 patients with chronic kidney disease yielded a genetic diagnosis in just under 10% of cases. (Funded by the National Institutes of Health and others.).


Assuntos
Exoma , Predisposição Genética para Doença , Mutação , Insuficiência Renal Crônica/genética , Análise de Sequência de DNA/métodos , Adulto , Idoso , Estudos de Coortes , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência Renal Crônica/etnologia , Adulto Jovem
20.
Am J Kidney Dis ; 79(4): 570-581, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34571062

RESUMO

Blocking the complement system as a therapeutic strategy has been proposed for numerous glomerular diseases but presents myriad questions and challenges, not the least of which is demonstrating efficacy and safety. In light of these potential issues and because there are an increasing number of anticomplement therapy trials either planned or under way, the National Kidney Foundation facilitated an all-virtual scientific workshop entitled "Improving Clinical Trials for Anti-Complement Therapies in Complement-Mediated Glomerulopathies." Attended by patient representatives and experts in glomerular diseases, complement physiology, and clinical trial design, the aim of this workshop was to develop standards applicable for designing and conducting clinical trials for anticomplement therapies across a wide spectrum of complement-mediated glomerulopathies. Discussions focused on study design, participant risk assessment and mitigation, laboratory measurements and biomarkers to support these studies, and identification of optimal outcome measures to detect benefit, specifically for trials in complement-mediated diseases. This report summarizes the discussions from this workshop and outlines consensus recommendations.


Assuntos
Proteínas Inativadoras do Complemento , Nefropatias , Proteínas Inativadoras do Complemento/uso terapêutico , Proteínas do Sistema Complemento , Humanos , Rim
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA