Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Physiol ; 232(11): 3112-3127, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28019653

RESUMO

Receptor tyrosine kinase (RTK) signaling controls key aspects of cellular differentiation, proliferation, survival, metabolism, and migration. Deregulated RTK signaling also underlies many cancers. Glycosphingolipids (GSL) are essential elements of the plasma membrane. By affecting clustering and activity of membrane receptors, GSL modulate signal transduction, including that mediated by the RTK. GSL are abundant in the nervous system, and glial development in Drosophila is emerging as a useful model for studying how GSL modulate RTK signaling. Drosophila has a simple GSL biosynthetic pathway, in which the mannosyltransferase Egghead controls conversion of glucosylceramide (GlcCer) to mactosylceramide (MacCer). Lack of elongated GSL in egghead (egh) mutants causes overgrowth of subperineurial glia (SPG), largely due to aberrant activation of phosphatidylinositol 3-kinase (PI3K). However, to what extent this effect involves changes in upstream signaling events is unresolved. We show here that glial overgrowth in egh is strongly linked to increased activation of Insulin and fibroblast growth factor receptors (FGFR). Glial hypertrophy is phenocopied when overexpressing gain-of-function mutants of the Drosophila insulin receptor (InR) and the FGFR homolog Heartless (Htl) in wild type SPG, and is suppressed by inhibiting Htl and InR activity in egh. Knockdown of GlcCer synthase in the SPG fails to suppress glial overgrowth in egh nerves, and slightly promotes overgrowth in wild type, suggesting that RTK hyperactivation is caused by absence of MacCer and not by GlcCer accumulation. We conclude that an early product in GSL biosynthesis, MacCer, prevents inappropriate activation of insulin and fibroblast growth factor receptors in Drosophila glia.


Assuntos
Crescimento Celular , Ceramidas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neuroglia/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Genótipo , Hipertrofia , Ligantes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Neuroglia/imunologia , Neuroglia/patologia , Fenótipo , Proteínas Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/genética , Receptores de Fatores de Crescimento de Fibroblastos/genética
2.
PLoS Biol ; 11(4): e1001542, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23630454

RESUMO

Secretory vesicles in endocrine cells store hormones such as growth hormone (GH) and insulin before their release into the bloodstream. The molecular mechanisms governing budding of immature secretory vesicles from the trans-Golgi network (TGN) and their subsequent maturation remain unclear. Here, we identify the lipid binding BAR (Bin/amphiphysin/Rvs) domain protein PICK1 (protein interacting with C kinase 1) as a key component early in the biogenesis of secretory vesicles in GH-producing cells. Both PICK1-deficient Drosophila and mice displayed somatic growth retardation. Growth retardation was rescued in flies by reintroducing PICK1 in neurosecretory cells producing somatotropic peptides. PICK1-deficient mice were characterized by decreased body weight and length, increased fat accumulation, impaired GH secretion, and decreased storage of GH in the pituitary. Decreased GH storage was supported by electron microscopy showing prominent reduction in secretory vesicle number. Evidence was also obtained for impaired insulin secretion associated with decreased glucose tolerance. PICK1 localized in cells to immature secretory vesicles, and the PICK1 BAR domain was shown by live imaging to associate with vesicles budding from the TGN and to possess membrane-sculpting properties in vitro. In mouse pituitary, PICK1 co-localized with the BAR domain protein ICA69, and PICK1 deficiency abolished ICA69 protein expression. In the Drosophila brain, PICK1 and ICA69 co-immunoprecipitated and showed mutually dependent expression. Finally, both in a Drosophila model of type 2 diabetes and in high-fat-diet-induced obese mice, we observed up-regulation of PICK1 mRNA expression. Our findings suggest that PICK1, together with ICA69, is critical during budding of immature secretory vesicles from the TGN and thus for vesicular storage of GH and possibly other hormones. The data link two BAR domain proteins to membrane remodeling processes in the secretory pathway of peptidergic endocrine cells and support an important role of PICK1/ICA69 in maintenance of metabolic homeostasis.


Assuntos
Intolerância à Glucose/metabolismo , Transtornos do Crescimento/metabolismo , Proteínas Nucleares/deficiência , Vesículas Secretórias/metabolismo , Animais , Autoantígenos/fisiologia , Células COS , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Linhagem Celular , Chlorocebus aethiops , Drosophila melanogaster , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Glucose/metabolismo , Intolerância à Glucose/genética , Transtornos do Crescimento/genética , Hormônio do Crescimento/deficiência , Hormônio do Crescimento/metabolismo , Homeostase , Insulina/metabolismo , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Hipófise/metabolismo , Ligação Proteica , Transporte Proteico , Ratos , Imagem com Lapso de Tempo , Rede trans-Golgi/metabolismo
3.
Proc Natl Acad Sci U S A ; 109(18): 6987-92, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22493273

RESUMO

Glycosphingolipids (GSLs) are of fundamental importance in the nervous system. However, the molecular details associated with GSL function are largely unknown, in part because of the complexity of GSL biosynthesis in vertebrates. In Drosophila, only one major GSL biosynthetic pathway exists, controlled by the glycosyltransferase Egghead (Egh). Here we discovered that loss of Egh causes overgrowth of peripheral nerves and attraction of immune cells to the nerves. This phenotype is reminiscent of the human disorder neurofibromatosis type 1, which is characterized by disfiguring nerve sheath tumors with mast cell infiltration, increased cancer risk, and learning deficits. Neurofibromatosis type 1 is due to a reduction of the tumor suppressor neurofibromin, a negative regulator of the small GTPase Ras. Enhanced Ras signaling promotes glial growth through activation of phosphatidylinositol 3-kinase (PI3K) and its downstream kinase Akt. We find that overgrowth of peripheral nerves in egh mutants is suppressed by down-regulation of the PI3K signaling pathway by expression of either dominant-negative PI3K, the tumor suppressor PTEN, or the transcription factor FOXO in the subperineurial glia. These results show that loss of the glycosyltransferase Egh affects membrane signaling and activation of PI3K signaling in glia of the peripheral nervous system, and suggest that glycosyltransferases may suppress proliferation.


Assuntos
Drosophila/metabolismo , Glucosilceramidas/metabolismo , Neurofibromatose 1/metabolismo , Animais , Modelos Animais de Doenças , Regulação para Baixo , Drosophila/genética , Drosophila/imunologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Genes de Insetos , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Modelos Neurológicos , Mutação , Neurofibromatose 1/genética , Neurofibromatose 1/imunologia , Neurofibromatose 1/patologia , Nervos Periféricos/imunologia , Nervos Periféricos/metabolismo , Nervos Periféricos/patologia , Fenótipo , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Proteínas ras/metabolismo
4.
J Clin Invest ; 132(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35077398

RESUMO

Bin/amphiphysin/Rvs (BAR) domains are positively charged crescent-shaped modules that mediate curvature of negatively charged lipid membranes during remodeling processes. The BAR domain proteins PICK1, ICA69, and the arfaptins have recently been demonstrated to coordinate the budding and formation of immature secretory granules (ISGs) at the trans-Golgi network. Here, we identify 4 coding variants in the PICK1 gene from a whole-exome screening of Danish patients with diabetes that each involve a change in positively charged residues in the PICK1 BAR domain. All 4 coding variants failed to rescue insulin content in INS-1E cells upon knock down of endogenous PICK1. Moreover, 2 variants showed dominant-negative properties. In vitro assays addressing BAR domain function suggested that the coding variants compromised BAR domain function but increased the capacity to cause fission of liposomes. Live confocal microscopy and super-resolution microscopy further revealed that PICK1 resides transiently on ISGs before egress via vesicular budding events. Interestingly, this egress of PICK1 was accelerated in the coding variants. We propose that PICK1 assists in or complements the removal of excess membrane and generic membrane trafficking proteins, and possibly also insulin, from ISGs during the maturation process; and that the coding variants may cause premature budding, possibly explaining their dominant-negative function.


Assuntos
Diabetes Mellitus , Insulina , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Proteínas do Tecido Nervoso , Proteínas Nucleares/metabolismo , Ligação Proteica
5.
Cell Rep ; 35(2): 108973, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852866

RESUMO

Fast axonal transport of neuropeptide-containing dense core vesicles (DCVs), endolysosomal organelles, and presynaptic components is critical for maintaining neuronal functionality. How the transport of DCVs is orchestrated remains an important unresolved question. The small GTPase Rab2 mediates DCV biogenesis and endosome-lysosome fusion. Here, we use Drosophila to demonstrate that Rab2 also plays a critical role in bidirectional axonal transport of DCVs, endosomes, and lysosomal organelles, most likely by controlling molecular motors. We further show that the lysosomal motility factor Arl8 is required as well for axonal transport of DCVs, but unlike Rab2, it is also critical for DCV exit from cell bodies into axons. We also provide evidence that the upstream regulators of Rab2 and Arl8, Ema and BORC, activate these GTPases during DCV transport. Our results uncover the mechanisms underlying axonal transport of DCVs and reveal surprising parallels between the regulation of DCV and lysosomal motility.


Assuntos
Fatores de Ribosilação do ADP/genética , Transporte Axonal/genética , Vesículas de Núcleo Denso/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Neurônios/metabolismo , Proteína rab2 de Ligação ao GTP/genética , Fatores de Ribosilação do ADP/metabolismo , Animais , Vesículas de Núcleo Denso/ultraestrutura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endossomos/metabolismo , Endossomos/ultraestrutura , Regulação da Expressão Gênica , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Fusão de Membrana , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Neurônios/ultraestrutura , Biogênese de Organelas , Ligação Proteica , Transdução de Sinais , Proteína rab2 de Ligação ao GTP/metabolismo
6.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34375312

RESUMO

Dysfunctional dopaminergic neurotransmission is central to movement disorders and mental diseases. The dopamine transporter (DAT) regulates extracellular dopamine levels, but the genetic and mechanistic link between DAT function and dopamine-related pathologies is not clear. Particularly, the pathophysiological significance of monoallelic missense mutations in DAT is unknown. Here, we use clinical information, neuroimaging, and large-scale exome-sequencing data to uncover the occurrence and phenotypic spectrum of a DAT coding variant, DAT-K619N, which localizes to the critical C-terminal PSD-95/Discs-large/ZO-1 homology-binding motif of human DAT (hDAT). We identified the rare but recurrent hDAT-K619N variant in exome-sequenced samples of patients with neuropsychiatric diseases and a patient with early-onset neurodegenerative parkinsonism and comorbid neuropsychiatric disease. In cell cultures, hDAT-K619N displayed reduced uptake capacity, decreased surface expression, and accelerated turnover. Unilateral expression in mouse nigrostriatal neurons revealed differential effects of hDAT-K619N and hDAT-WT on dopamine-directed behaviors, and hDAT-K619N expression in Drosophila led to impairments in dopamine transmission with accompanying hyperlocomotion and age-dependent disturbances of the negative geotactic response. Moreover, cellular studies and viral expression of hDAT-K619N in mice demonstrated a dominant-negative effect of the hDAT-K619N mutant. Summarized, our results suggest that hDAT-K619N can effectuate dopamine dysfunction of pathological relevance in a dominant-negative manner.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Transtornos Mentais/genética , Neurônios/metabolismo , Transtornos Parkinsonianos/genética , Adulto , Animais , Comportamento Animal , Transporte Biológico , Células Cultivadas , Bases de Dados Genéticas , Drosophila , Exoma , Feminino , Humanos , Hipocinesia/diagnóstico por imagem , Hipocinesia/genética , Hipocinesia/metabolismo , Masculino , Transtornos Mentais/metabolismo , Mesencéfalo/metabolismo , Camundongos , Pessoa de Meia-Idade , Atividade Motora/genética , Mutação , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/metabolismo , Fenótipo , Transmissão Sináptica , Tomografia Computadorizada de Emissão de Fóton Único , Transfecção
7.
J Cell Biol ; 161(4): 737-47, 2003 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-12756235

RESUMO

It has been hypothesized that in the mature nerve terminal, interactions between synapsin and actin regulate the clustering of synaptic vesicles and the availability of vesicles for release during synaptic activity. Here, we have used immunogold electron microscopy to examine the subcellular localization of actin and synapsin in the giant synapse in lamprey at different states of synaptic activity. In agreement with earlier observations, in synapses at rest, synapsin immunoreactivity was preferentially localized to a portion of the vesicle cluster distal to the active zone. During synaptic activity, however, synapsin was detected in the pool of vesicles proximal to the active zone. In addition, actin and synapsin were found colocalized in a dynamic filamentous cytomatrix at the sites of synaptic vesicle recycling, endocytic zones. Synapsin immunolabeling was not associated with clathrin-coated intermediates but was found on vesicles that appeared to be recycling back to the cluster. Disruption of synapsin function by microinjection of antisynapsin antibodies resulted in a prominent reduction of the cytomatrix at endocytic zones of active synapses. Our data suggest that in addition to its known function in clustering of vesicles in the reserve pool, synapsin migrates from the synaptic vesicle cluster and participates in the organization of the actin-rich cytomatrix in the endocytic zone during synaptic activity.


Assuntos
Actinas/metabolismo , Lampreias/metabolismo , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Endocitose , Microinjeções , Microscopia Imunoeletrônica , Modelos Biológicos , Medula Espinal/metabolismo , Medula Espinal/ultraestrutura , Sinapses/química , Sinapses/metabolismo , Sinapses/ultraestrutura , Vesículas Sinápticas/ultraestrutura
8.
Autophagy ; 14(9): 1520-1542, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29940804

RESUMO

Rab2 is a conserved Rab GTPase with a well-established role in secretory pathway function and phagocytosis. Here we demonstrate that Drosophila Rab2 is recruited to late endosomal membranes, where it controls the fusion of LAMP-containing biosynthetic carriers and lysosomes to late endosomes. In contrast, the lysosomal GTPase Gie/Arl8 is only required for late endosome-lysosome fusion, but not for the delivery of LAMP to the endocytic pathway. We also find that Rab2 is required for the fusion of autophagosomes to the endolysosomal pathway, but not for the biogenesis of lysosome-related organelles. Surprisingly, Rab2 does not rely on HOPS-mediated vesicular fusion for recruitment to late endosomal membranes. Our work suggests that Drosophila Rab2 is a central regulator of the endolysosomal and macroautophagic/autophagic pathways by controlling the major heterotypic fusion processes at the late endosome.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Fusão de Membrana , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Endocitose , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Mutação/genética , Fenótipo , Proteólise , Vacúolos/metabolismo
9.
Cell Rep ; 23(7): 2056-2069, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29768204

RESUMO

BAR domains are dimeric protein modules that sense, induce, and stabilize lipid membrane curvature. Here, we show that membrane curvature sensing (MCS) directs cellular localization and function of the BAR domain protein PICK1. In PICK1, and the homologous proteins ICA69 and arfaptin2, we identify an amphipathic helix N-terminal to the BAR domain that mediates MCS. Mutational disruption of the helix in PICK1 impaired MCS without affecting membrane binding per se. In insulin-producing INS-1E cells, super-resolution microscopy revealed that disruption of the helix selectively compromised PICK1 density on insulin granules of high curvature during their maturation. This was accompanied by reduced hormone storage in the INS-1E cells. In Drosophila, disruption of the helix compromised growth regulation. By demonstrating size-dependent binding on insulin granules, our finding highlights the function of MCS for BAR domain proteins in a biological context distinct from their function, e.g., at the plasma membrane during endocytosis.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Grânulos Citoplasmáticos/metabolismo , Drosophila melanogaster/metabolismo , Insulina/metabolismo , Secreção de Insulina , Lipossomos , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
11.
Neuroreport ; 16(16): 1805-8, 2005 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-16237331

RESUMO

Large clostridial cytotoxins and protein overexpression were used to probe for involvement of Ras-related GTPases (guanosine triphosphate) in synaptic transmission in cultured rat hippocampal neurons. The toxins TcdA-10463 (inactivates Rho, Rac, Cdc42, Rap) and TcsL-1522 (inactivates Ral, Rac, Ras, R-Ras, Rap) both inhibited autaptic responses. In a proportion of the neurons (25%, TcdA-10463; 54%, TcsL-1522), the inhibition was associated with a shift from activity-dependent depression to facilitation, indicating that the synaptic release probability was reduced. Overexpression of a dominant negative Ral mutant, Ral A28N, caused a strong inhibition of autaptic responses, which was associated with a shift to facilitation in a majority (80%) of the neurons. These results indicate that Ral, along with at least one other non-Rab GTPase, participates in presynaptic regulation in hippocampal neurons.


Assuntos
Hipocampo/citologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Proteínas ral de Ligação ao GTP/fisiologia , Alanina/genética , Animais , Proteínas de Arabidopsis/farmacologia , Asparagina/genética , Toxinas Bacterianas/farmacologia , Western Blotting/métodos , Isótopos de Carbono/farmacologia , Células Cultivadas , Interações Medicamentosas , Estimulação Elétrica/métodos , Enterotoxinas/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Glucose/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Mutação/fisiologia , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Ratos , Transmissão Sináptica/efeitos dos fármacos , Toxinas Biológicas/farmacologia , Transfecção/métodos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Ácido gama-Aminobutírico/farmacologia
12.
Ugeskr Laeger ; 174(10): 642-7, 2012 Mar 05.
Artigo em Dinamarquês | MEDLINE | ID: mdl-22395013

RESUMO

Neurofibromatosis 1 (NF1, von Recklinghausen's disease) is a dominantly inherited multi-organ disease defined primarily by café au lait patches and neurofibromas. NF1 predisposes to cancer and is associated with cognitive dysfunction and learning defects. In recent years, considerable progress has been made in the understanding of NF1 pathogenesis, not least based on studies of genetically engineered animal models. We present an overview of the most important recent findings and the related current efforts to develop novel therapeutic strategies.


Assuntos
Neurofibromatose 1 , Animais , Transtornos Cognitivos/genética , Modelos Animais de Doenças , Genes Supressores de Tumor , Humanos , Mutação , Neoplasias de Bainha Neural/genética , Neurofibromatose 1/etiologia , Neurofibromatose 1/genética , Neurofibromatose 1/terapia , Neurofibromina 1/genética
13.
Cell Biochem Biophys ; 60(3): 137-54, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21184288

RESUMO

Members of the BAR domain protein superfamily are essential elements of cellular traffic. Endophilins are among the best studied BAR domain proteins. They have a prominent function in synaptic vesicle endocytosis (SVE), receptor trafficking and apoptosis, and in other processes that require remodeling of the membrane structure. Here, we discuss the role of endophilins in these processes and summarize novel insights into the molecular aspects of endophilin function. Also, we discuss phosphorylation of endophilins and how this and other mechanisms may contribute to disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Aciltransferases/química , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endocitose , Humanos , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Estrutura Terciária de Proteína , Vesículas Sinápticas/metabolismo
14.
PLoS One ; 5(3): e9492, 2010 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-20209138

RESUMO

BACKGROUND: Endophilin is a cytoplasmic protein with an important function in clathrin-dependent endocytosis at synapses and elsewhere. Endophilin has a BAR (Bin/Amphiphysin/Rvs-homology) domain, which is implicated in the sensing and induction of membrane curvature. Previous structure-function studies of the endophilin-A BAR domain have almost exclusively been made in reduced systems, either in vitro or ex vivo in cultured cells. To extend and complement this work, we have analyzed the role played by the structural features of the endophilin-A BAR domain in Drosophila in vivo. METHODOLOGY/PRINCIPAL FINDINGS: The study is based on genetic rescue of endophilin-A (endoA) null mutants with wild type or mutated endoA transgenes. We evaluated the viability of the rescuants, the locomotor behavior in adult flies and the neurotransmission at the larval neuromuscular junction. Whereas mutating the endophilin BAR domain clearly affected adult flies, larval endophilin function was surprisingly resistant to mutagenesis. Previous reports have stressed the importance of a central appendage on the convex BAR surface, which forms a hydrophobic ridge able to directly insert into the lipid bilayer. We found that the charge-negative substitution A66D, which targets the hydrophobic ridge and was reported to completely disrupt the ability of endophilin-BAR to tubulate liposomes in vitro, rescued viability and neurotransmission with the same efficiency as wild type endoA transgenes, even in adults. A similar discrepancy was found for the hydrophilic substitutions A63S/A66S and A63S/A66S/M70Q. The A66W mutation, which introduces a bulky hydrophobic side chain and induces massive vesiculation of liposomes in vitro, strongly impeded eye development, even in presence of the endogenous endoA gene. Substantial residual function was observed in larvae rescued with the EndoA(Arf) transgene, which encodes a form of endophilin-A that completely lacks the central appendage. Whereas a mutation (D151P) designed to increase the BAR curvature was functional, another mutation (P143A, DeltaLEN) designed to decrease the curvature was not. CONCLUSIONS/SIGNIFICANCE: Our results provide novel insight into the structure/function relationship of the endophilin-A BAR domain in vivo, especially with relation to synaptic function.


Assuntos
Aciltransferases/química , Aciltransferases/genética , Animais , Sobrevivência Celular , Citoplasma/metabolismo , Análise Mutacional de DNA , Drosophila melanogaster , Eletrofisiologia , Técnicas Genéticas , Bicamadas Lipídicas/química , Mutagênese , Mutação , Neurônios/patologia , Estrutura Terciária de Proteína , Transmissão Sináptica , Transgenes
15.
J Comp Neurol ; 517(3): 313-32, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19757495

RESUMO

The protein interacting with C kinase 1 (PICK1) protein was first identified as a novel binding partner for protein kinase C. PICK1 contains a membrane-binding BAR domain and a PDZ domain interacting with many synaptic proteins, including the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunit GluR2 and the dopamine transporter. PICK1 is strongly implicated in GluR2 trafficking and synaptic plasticity. In mammals, PICK1 has been characterized extensively in cell culture studies. To study PICK1 in an intact system, we characterized PICK1 expression immunohistochemically in the adult and larval Drosophila central nervous system. PICK1 was found in cell bodies in the subesophageal ganglion, the antennal lobe, the protocerebrum, and the neuroendocrine center pars intercerebralis. The cell types that express PICK1 were identified using GAL4 enhancer trap lines. The PICK1-expressing cells form a subpopulation of neurons. PICK1 immunoreactivity was neither detected in glutamatergic nor in dopaminergic neurons. Also, we observed PICK1 expression in only a few GABAergic neurons, located in the antennal lobe. In contrast, we detected robust PICK1 immunolabeling of peptidergic neurons in the neuroendocrine system, which express the transcription factor DIMM and the amidating enzyme peptidylglycine-alpha-hydroxylating monooxygenase (PHM). The PICK1-positive cells include neurosecretory cells that produce the insulin-like peptide dILP2. PICK1 expression in insulin-producing cells also occurs in mammals, as it was also observed in a rat insulinoma cell line derived from pancreatic beta-cells. At the subcellular level, PICK1 was found in the perinuclear zone but surprisingly not in synaptic domains. We conclude that PICK1 may serve an important role in the neuroendocrine system both in insects and vertebrates.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Células Neuroendócrinas/metabolismo , Neurônios/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Dopamina/metabolismo , Proteínas de Drosophila/genética , Ácido Glutâmico/metabolismo , Imuno-Histoquímica , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mutação , Neuropeptídeos , Sistemas Neurossecretores/crescimento & desenvolvimento , Sistemas Neurossecretores/metabolismo , Sistema Nervoso Periférico/crescimento & desenvolvimento , Sistema Nervoso Periférico/metabolismo , Ratos , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Ácido gama-Aminobutírico/metabolismo
16.
Eur J Neurosci ; 25(4): 1079-86, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17331204

RESUMO

Alzheimer's disease (AD) is characterized by neurofibrillary tangles and extracellular plaques, which consist mainly of beta-amyloid derived from the beta-amyloid precursor protein (APP). An additional feature of AD is axonopathy, which might contribute to impairment of cognitive functions. Specifically, axonal transport defects have been reported in AD animal models, including mice and flies that overexpress APP and tau. Here we demonstrate that the APP-induced traffic jam of vesicles in peripheral nerves of Drosophila melanogaster larvae depends on the four residues NPTY motif in the APP intracellular domain. Furthermore, heterologous expression of Fe65 and JIP1b, scaffolding proteins interacting with the NPTY motif, also perturb axonal transport. Together, these data indicate that JIP1b or Fe65 may be involved in the APP-induced axonal transport defect. Moreover, we have characterized neurotransmission at the neuromuscular junction in transgenic larvae that express human APP. Consistent with the observation that these larvae do not show any obvious movement deficits, we found no changes in basal synaptic transmission. However, short-term synaptic plasticity was affected by overexpression of APP. Together, our results show that overexpression of APP induces partial stalling of axonal transport vesicles, paralleled by abnormalities in synaptic plasticity, which may provide a functional link to the deterioration of cognitive functions observed in AD.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Axônios/metabolismo , Junção Neuromuscular/fisiologia , Sinaptotagminas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos/fisiologia , Análise de Variância , Animais , Animais Geneticamente Modificados , Drosophila melanogaster , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Larva , Camundongos , Mutagênese/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo
17.
Eur J Neurosci ; 17(5): 1013-22, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12653977

RESUMO

Noradrenaline (NA) is a potent modulator of locomotion in many vertebrate nervous systems. When Xenopus tadpoles swim, waves of motor neuron activity alternate across the body and propagate along it with a brief rostro-caudal delay (RC-delay) between segments. We have now investigated the mechanisms underlying the reduction of RC-delay s by NA. When recording from motor neurons caudal to the twelfth postotic cleft, the mid-cycle inhibition was weak and sometimes absent, compared to more rostral locations. NA enhanced and even unmasked inhibition in these caudal neurons and enhanced inhibition in rostral neurons, but to a lesser extent. Consequently, the relative increase in the amplitude of the inhibition was greater in caudal neurons, thus reducing the RC-inhibitory gradient. We next investigated whether NA might affect the electrical properties of neurons, such that enhanced inhibition under NA might promote postinhibitory rebound firing. The synaptic inputs during swimming were simulated using a sustained positive current, superimposed upon which were brief negative currents. When these conditions were held constant NA enhanced the probability of rebound firing--indicating a direct effect on membrane properties--in addition to any indirect effect of enhanced inhibition. We propose that NA preferentially enhances weak caudal inhibition, reducing the inhibitory gradient along the cord. This effect on inhibitory synaptic transmission, comprising parallel pre- and postsynaptic components, will preferentially facilitate rebound firing in caudal neurons, advancing their firing relative to more rostral neurons, whilst additionally increasing the networks ability to sustain the longer cycle periods under NA.


Assuntos
Neurônios Motores/fisiologia , Inibição Neural/efeitos dos fármacos , Norepinefrina/farmacologia , Xenopus laevis/fisiologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Larva , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Neurônios Motores/efeitos dos fármacos , Inibição Neural/fisiologia , Fenilefrina/farmacologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia , Natação/fisiologia
18.
Cell ; 109(1): 101-12, 2002 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-11955450

RESUMO

We have identified mutations in Drosophila endophilin to study its function in vivo. Endophilin is required presynaptically at the neuromuscular junction, and absence of Endophilin dramatically impairs endocytosis in vivo. Mutant larvae that lack Endophilin fail to take up FM1-43 dye in synaptic boutons, indicating an inability to retrieve synaptic membrane. This defect is accompanied by an expansion of the presynaptic membrane, and a depletion of vesicles from the bouton lumen. Interestingly, mutant larvae are still able to sustain release at 15%-20% of the normal rate during high-frequency stimulation. We propose that kiss-and-run maintains neurotransmission at active zones of the larval NMJ in endophilin animals.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Clatrina/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Endocitose/genética , Sistema Nervoso/crescimento & desenvolvimento , Junção Neuromuscular/crescimento & desenvolvimento , Membranas Sinápticas/genética , Animais , Proteínas de Transporte/genética , Tamanho Celular/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Masculino , Microscopia Eletrônica , Neurônios Motores/metabolismo , Neurônios Motores/ultraestrutura , Mutação/genética , Sistema Nervoso/metabolismo , Sistema Nervoso/ultraestrutura , Junção Neuromuscular/metabolismo , Junção Neuromuscular/ultraestrutura , Neurotransmissores/genética , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Transporte Proteico/genética , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica/genética , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura
19.
Proc Natl Acad Sci U S A ; 99(22): 14476-81, 2002 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-12381791

RESUMO

Actin is an abundant component of nerve terminals that has been implicated at multiple steps of the synaptic vesicle cycle, including reversible anchoring, exocytosis, and recycling of synaptic vesicles. In the present study we used the lamprey reticulospinal synapse to examine the role of actin at the site of synaptic vesicle recycling, the endocytic zone. Compounds interfering with actin function, including phalloidin, the catalytic subunit of Clostridium botulinum C2 toxin, and N-ethylmaleimide-treated myosin S1 fragments were microinjected into the axon. In unstimulated, phalloidin-injected axons actin filaments formed a thin cytomatrix adjacent to the plasma membrane around the synaptic vesicle cluster. The filaments proliferated after stimulation and extended toward the vesicle cluster. Synaptic vesicles were tethered along the filaments. Injection of N-ethylmaleimide-treated myosin S1 fragments caused accumulation of aggregates of synaptic vesicles between the endocytic zone and the vesicle cluster, suggesting that vesicle transport was inhibited. Phalloidin, as well as C2 toxin, also caused changes in the structure of clathrin-coated pits in stimulated synapses. Our data provide evidence for a critical role of actin in recycling of synaptic vesicles, which seems to involve functions both in endocytosis and in the transport of recycled vesicles to the synaptic vesicle cluster.


Assuntos
Actinas/metabolismo , Endocitose/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Toxinas Botulínicas/farmacologia , Citoesqueleto/metabolismo , Lampreias , Subfragmentos de Miosina/farmacologia , Terminações Pré-Sinápticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA