Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem B ; 110(20): 9966-75, 2006 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-16706454

RESUMO

The reduction of the surface oxide on Rh(111) by H(2) was observed in situ by scanning tunneling microscopy (STM) and high-resolution core level spectroscopy (HRCLS). At room temperature, H(2) does not adsorb on the oxide, only in reduced areas. Reduction starts in very few sites, almost exclusively in stepped areas. One can also initiate the reduction process by deliberately creating defects with the STM tip allowing us to examine the reduction kinetics in detail. Depending on the size of the reduced area and the hydrogen pressure, two growth regimes were found. At low H(2) pressures or small reduced areas, the reduction rate is limited by hydrogen adsorption on the reduced area. For large reduced areas, the reduction rate is limited by the processes at the border of the reduced area. Since a near-random distribution of the reduction nuclei was found and the reduction process at defects starts at a random time, one can use Johnson-Mehl-Avrami-Kolmogoroff (JMAK) theory to describe the process of reduction. The microscopic data from STM agree well with spatially averaged data from HRCLS measurements.

2.
J Phys Condens Matter ; 24(22): 225006, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22565149

RESUMO

The O adsorption on Rh(100) has been studied using high resolution core level spectroscopy, low energy electron diffraction and scanning tunnelling microscopy. In addition to the well known (2 × 2), (2 × 2)-pg and c(8 × 2) structures at coverages of 0.25, 0.5 and 1.75 ML respectively, an intermediate (3 × 1) structure with a coverage of 2/3 ML is identified.

3.
Phys Rev Lett ; 101(26): 266104, 2008 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-19437652

RESUMO

Using scanning tunneling microscopy and density functional theory, we have studied the initial oxidation of Rh(111) surfaces with two types of straight steps, having {100} and {111} microfacets. The one-dimensional (1D) oxide initially formed at the steps acts as a barrier impeding formation of the 2D oxide on the (111) terrace behind it. We demonstrate that the details of the structure of the 1D oxide govern the rate of 2D oxidation and discuss implications for oxidation of nanoparticles.

4.
Phys Rev Lett ; 96(14): 146102, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16712098

RESUMO

The structure of the oxygen-induced p(4 x 4) reconstruction of Ag(111) is determined by a combination of scanning tunneling microscopy, surface x-ray diffraction, core level spectroscopy, and density functional theory. We demonstrate that all previous models of this surface structure are incorrect and propose a new model which is able to explain all our experimental findings but has no resemblance to bulk silver oxide. We also shed some light on the limitations of current density functional theories and the potential role of van der Waals interactions in the stabilization of oxygen-induced surface reconstructions of noble metals.

5.
Phys Rev Lett ; 95(25): 256102, 2005 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-16384475

RESUMO

Using core-level spectroscopy and density functional theory we show that a one-dimensional (1D) oxide structure forms at the steps of the Pt(332) surface after exposure. The 1D oxide is found to be stable in an oxygen pressure range, where bulk oxides are only metastable, and is therefore argued to be a precursor to the Pt oxidation. As an example of the consequences of such a precursor exclusively present at the steps, we investigate the reaction of CO with oxygen covered Pt(332). Albeit more strongly bound, the oxidic oxygen is found to react more easily with CO than oxygen chemisorbed on the Pt terraces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA