Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(26): e2322978121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38900791

RESUMO

MDGA (MAM domain containing glycosylphosphatidylinositol anchor) family proteins were previously identified as synaptic suppressive factors. However, various genetic manipulations have yielded often irreconcilable results, precluding precise evaluation of MDGA functions. Here, we found that, in cultured hippocampal neurons, conditional deletion of MDGA1 and MDGA2 causes specific alterations in synapse numbers, basal synaptic transmission, and synaptic strength at GABAergic and glutamatergic synapses, respectively. Moreover, MDGA2 deletion enhanced both N-methyl-D-aspartate (NMDA) receptor- and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated postsynaptic responses. Strikingly, ablation of both MDGA1 and MDGA2 abolished the effect of deleting individual MDGAs that is abrogated by chronic blockade of synaptic activity. Molecular replacement experiments further showed that MDGA1 requires the meprin/A5 protein/PTPmu (MAM) domain, whereas MDGA2 acts via neuroligin-dependent and/or MAM domain-dependent pathways to regulate distinct postsynaptic properties. Together, our data demonstrate that MDGA paralogs act as unique negative regulators of activity-dependent postsynaptic organization at distinct synapse types, and cooperatively contribute to adjustment of excitation-inhibition balance.


Assuntos
Hipocampo , Sinapses , Transmissão Sináptica , Animais , Sinapses/metabolismo , Camundongos , Hipocampo/metabolismo , Hipocampo/citologia , Transmissão Sináptica/fisiologia , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Camundongos Knockout , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células Cultivadas
2.
Proc Natl Acad Sci U S A ; 121(12): e2313236121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466837

RESUMO

Phase separation drives compartmentalization of intracellular contents into various biomolecular condensates. Individual condensate components are thought to differentially contribute to the organization and function of condensates. However, how intermolecular interactions among constituent biomolecules modulate the phase behaviors of multicomponent condensates remains unclear. Here, we used core components of the inhibitory postsynaptic density (iPSD) as a model system to quantitatively probe how the network of intra- and intermolecular interactions defines the composition and cellular distribution of biomolecular condensates. We found that oligomerization-driven phase separation of gephyrin, an iPSD-specific scaffold, is critically modulated by an intrinsically disordered linker region exhibiting minimal homotypic attractions. Other iPSD components, such as neurotransmitter receptors, differentially promote gephyrin condensation through distinct binding modes and affinities. We further demonstrated that the local accumulation of scaffold-binding proteins at the cell membrane promotes the nucleation of gephyrin condensates in neurons. These results suggest that in multicomponent systems, the extent of scaffold condensation can be fine-tuned by scaffold-binding factors, a potential regulatory mechanism for self-organized compartmentalization in cells.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Proteínas de Transporte/metabolismo , Sinapses/metabolismo , Termodinâmica
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074912

RESUMO

Balanced synaptic inhibition, controlled by multiple synaptic adhesion proteins, is critical for proper brain function. MDGA1 (meprin, A-5 protein, and receptor protein-tyrosine phosphatase mu [MAM] domain-containing glycosylphosphatidylinositol anchor protein 1) suppresses synaptic inhibition in mammalian neurons, yet the molecular mechanisms underlying MDGA1-mediated negative regulation of GABAergic synapses remain unresolved. Here, we show that the MDGA1 MAM domain directly interacts with the extension domain of amyloid precursor protein (APP). Strikingly, MDGA1-mediated synaptic disinhibition requires the MDGA1 MAM domain and is prominent at distal dendrites of hippocampal CA1 pyramidal neurons. Down-regulation of APP in presynaptic GABAergic interneurons specifically suppressed GABAergic, but not glutamatergic, synaptic transmission strength and inputs onto both the somatic and dendritic compartments of hippocampal CA1 pyramidal neurons. Moreover, APP deletion manifested differential effects in somatostatin- and parvalbumin-positive interneurons in the hippocampal CA1, resulting in distinct alterations in inhibitory synapse numbers, transmission, and excitability. The infusion of MDGA1 MAM protein mimicked postsynaptic MDGA1 gain-of-function phenotypes that involve the presence of presynaptic APP. The overexpression of MDGA1 wild type or MAM, but not MAM-deleted MDGA1, in the hippocampal CA1 impaired novel object-recognition memory in mice. Thus, our results establish unique roles of APP-MDGA1 complexes in hippocampal neural circuits, providing unprecedented insight into trans-synaptic mechanisms underlying differential tuning of neuronal compartment-specific synaptic inhibition.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Moléculas de Adesão de Célula Nervosa/genética , Inibição Neural , Sinapses/metabolismo , Precursor de Proteína beta-Amiloide/genética , Região CA1 Hipocampal , Proteínas de Transporte , Dendritos/metabolismo , Neurônios GABAérgicos/metabolismo , Interneurônios , Modelos Biológicos , Moléculas de Adesão de Célula Nervosa/química , Moléculas de Adesão de Célula Nervosa/metabolismo , Inibição Neural/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Células Piramidais/metabolismo , Receptores de GABA-B/metabolismo , Transmissão Sináptica
4.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35022233

RESUMO

Synaptic cell-adhesion molecules (CAMs) organize the architecture and properties of neural circuits. However, whether synaptic CAMs are involved in activity-dependent remodeling of specific neural circuits is incompletely understood. Leucine-rich repeat transmembrane protein 3 (LRRTM3) is required for the excitatory synapse development of hippocampal dentate gyrus (DG) granule neurons. Here, we report that Lrrtm3-deficient mice exhibit selective reductions in excitatory synapse density and synaptic strength in projections involving the medial entorhinal cortex (MEC) and DG granule neurons, accompanied by increased neurotransmitter release and decreased excitability of granule neurons. LRRTM3 deletion significantly reduced excitatory synaptic innervation of hippocampal mossy fibers (Mf) of DG granule neurons onto thorny excrescences in hippocampal CA3 neurons. Moreover, LRRTM3 loss in DG neurons significantly decreased mossy fiber long-term potentiation (Mf-LTP). Remarkably, silencing MEC-DG circuits protected against the decrease in the excitatory synaptic inputs onto DG and CA3 neurons, excitability of DG granule neurons, and Mf-LTP in Lrrtm3-deficient mice. These results suggest that LRRTM3 may be a critical factor in activity-dependent synchronization of the topography of MEC-DG-CA3 excitatory synaptic connections. Collectively, our data propose that LRRTM3 shapes the target-specific structural and functional properties of specific hippocampal circuits.


Assuntos
Sincronização Cortical/fisiologia , Hipocampo/fisiologia , Proteínas de Membrana/metabolismo , Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Sinapses/fisiologia , Animais , Região CA3 Hipocampal/metabolismo , Giro Denteado/metabolismo , Córtex Entorrinal/metabolismo , Potenciação de Longa Duração , Proteínas de Membrana/deficiência , Camundongos Knockout , Fibras Musgosas Hipocampais/metabolismo , Proteínas do Tecido Nervoso/deficiência , Neurônios/metabolismo , Pseudópodes/metabolismo , Transmissão Sináptica/fisiologia
5.
Bioessays ; 44(11): e2200134, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089658

RESUMO

Bidirectional trans-synaptic signaling is essential for the formation, maturation, and plasticity of synaptic connections. Synaptic cell adhesion molecules (CAMs) are prime drivers in shaping the identities of trans-synaptic signaling pathways. A series of recent studies provide evidence that diverse presynaptic cell adhesion proteins dictate the regulation of specific synaptic properties in postsynaptic neurons. Focusing on mammalian synaptic CAMs, this article outlines several exemplary cases supporting this notion and highlights how these trans-synaptic signaling pathways collectively contribute to the specificity and diversity of neural circuit architecture.


Assuntos
Neurônios , Sinapses , Animais , Sinapses/metabolismo , Neurônios/metabolismo , Moléculas de Adesão Celular/metabolismo , Comunicação Celular , Mamíferos/metabolismo
6.
Mil Psychol ; : 1-9, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37921631

RESUMO

The commitment of soldiers to the military is essential because it could lead to increased morale, motivation and retention. Despite the accumulation of knowledge about predictors of organizational commitment (OC), efforts to investigate environmental factors influencing OC are in their infancy. We note that individuals shape their attitudes toward the environment based on information obtained from their surroundings, and we investigate peer effects on OC using data from a natural experiment of randomly-assigned military academy roommates. A total of 400 cadets (Sex ratio: 93.5% male, Age: 21.13 ± 1.43 years) from 136 living quarters participated in this quantitative study. In both self- and roommate-reports, we found that the average affective commitment (AC), continuance commitment (CC), and normative commitment (NC) of roommates in a living quarter can still predict AC, CC, and NC of the remaining individual in that same living quarter, respectively, even after controlling for the personal predictors of that remaining individual. Additionally, in self-report, we discovered that when there is a high heterogeneity in AC among roommates within a living quarter, the AC of the remaining individual in that living quarter tends to be higher, even after controlling for the personal predictors of that remaining individual. These findings provide initial evidence that attempting to assign soldiers with low OC to the same living quarters as those with high OC may be worthwhile.

7.
J Neurosci ; 40(44): 8438-8462, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33037075

RESUMO

Neurexins (Nrxns) and LAR-RPTPs (leukocyte common antigen-related protein tyrosine phosphatases) are presynaptic adhesion proteins responsible for organizing presynaptic machineries through interactions with nonoverlapping extracellular ligands. Here, we report that two members of the LAR-RPTP family, PTPσ and PTPδ, are required for the presynaptogenic activity of Nrxns. Intriguingly, Nrxn1 and PTPσ require distinct sets of intracellular proteins for the assembly of specific presynaptic terminals. In addition, Nrxn1α showed robust heparan sulfate (HS)-dependent, high-affinity interactions with Ig domains of PTPσ that were regulated by the splicing status of PTPσ. Furthermore, Nrxn1α WT, but not a Nrxn1α mutant lacking HS moieties (Nrxn1α ΔHS), inhibited postsynapse-inducing activity of PTPσ at excitatory, but not inhibitory, synapses. Similarly, cis expression of Nrxn1α WT, but not Nrxn1α ΔHS, suppressed the PTPσ-mediated maintenance of excitatory postsynaptic specializations in mouse cultured hippocampal neurons. Lastly, genetics analyses using male or female Drosophila Dlar and Dnrx mutant larvae identified epistatic interactions that control synapse formation and synaptic transmission at neuromuscular junctions. Our results suggest a novel synaptogenesis model whereby different presynaptic adhesion molecules combine with distinct regulatory codes to orchestrate specific synaptic adhesion pathways.SIGNIFICANCE STATEMENT We provide evidence supporting the physical interactions of neurexins with leukocyte common-antigen related receptor tyrosine phosphatases (LAR-RPTPs). The availability of heparan sulfates and alternative splicing of LAR-RPTPs regulate the binding affinity of these interactions. A set of intracellular presynaptic proteins is involved in common for Nrxn- and LAR-RPTP-mediated presynaptic assembly. PTPσ triggers glutamatergic and GABAergic postsynaptic differentiation in an alternative splicing-dependent manner, whereas Nrxn1α induces GABAergic postsynaptic differentiation in an alternative splicing-independent manner. Strikingly, Nrxn1α inhibits the glutamatergic postsynapse-inducing activity of PTPσ, suggesting that PTPσ and Nrxn1α might control recruitment of a different pool of postsynaptic machinery. Drosophila orthologs of Nrxns and LAR-RPTPs mediate epistatic interactions in controlling synapse structure and strength at neuromuscular junctions, underscoring the physiological significance in vivo.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Antígenos Comuns de Leucócito/fisiologia , Moléculas de Adesão de Célula Nervosa/fisiologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Potenciais Pós-Sinápticos Excitadores/fisiologia , Espaço Extracelular/metabolismo , Feminino , Células HEK293 , Humanos , Larva , Masculino , Camundongos , Conformação Molecular , Moléculas de Adesão de Célula Nervosa/metabolismo , Gravidez , Terminações Pré-Sinápticas/metabolismo , Ratos , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética , Transmissão Sináptica/fisiologia
8.
J Biol Chem ; 295(27): 9244-9262, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32434929

RESUMO

Calsyntenin-3 (Clstn3) is a postsynaptic adhesion molecule that induces presynaptic differentiation via presynaptic neurexins (Nrxns), but whether Nrxns directly bind to Clstn3 has been a matter of debate. Here, using LC-MS/MS-based protein analysis, confocal microscopy, RNAscope assays, and electrophysiological recordings, we show that ß-Nrxns directly interact via their LNS domain with Clstn3 and Clstn3 cadherin domains. Expression of splice site 4 (SS4) insert-positive ß-Nrxn variants, but not insert-negative variants, reversed the impaired Clstn3 synaptogenic activity observed in Nrxn-deficient neurons. Consistently, Clstn3 selectively formed complexes with SS4-positive Nrxns in vivo Neuron-specific Clstn3 deletion caused significant reductions in number of excitatory synaptic inputs. Moreover, expression of Clstn3 cadherin domains in CA1 neurons of Clstn3 conditional knockout mice rescued structural deficits in excitatory synapses, especially within the stratum radiatum layer. Collectively, our results suggest that Clstn3 links to SS4-positive Nrxns to induce presynaptic differentiation and orchestrate excitatory synapse development in specific hippocampal neural circuits, including Schaffer collateral afferents.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Animais , Caderinas/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Cromatografia Líquida/métodos , Hipocampo/metabolismo , Proteínas de Membrana/fisiologia , Camundongos , Proteínas do Tecido Nervoso/fisiologia , Moléculas de Adesão de Célula Nervosa/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo , Espectrometria de Massas em Tandem/métodos
10.
J Neurosci ; 38(30): 6700-6721, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29934346

RESUMO

Leukocyte common antigen-receptor protein tyrosine phosphatases (LAR-RPTPs) are hub proteins that organize excitatory and inhibitory synapse development through binding to various extracellular ligands. Here, we report that knockdown (KD) of the LAR-RPTP family member PTPσ reduced excitatory synapse number and transmission in cultured rat hippocampal neurons, whereas KD of PTPδ produced comparable decreases at inhibitory synapses, in both cases without altering expression levels of interacting proteins. An extensive series of rescue experiments revealed that extracellular interactions of PTPσ with Slitrks are important for excitatory synapse development. These experiments further showed that the intracellular D2 domain of PTPσ is required for induction of heterologous synapse formation by Slitrk1 or TrkC, suggesting that interaction of LAR-RPTPs with distinct intracellular presynaptic proteins, drives presynaptic machinery assembly. Consistent with this, double-KD of liprin-α2 and -α3 or KD of PTPσ substrates (N-cadherin and p250RhoGAP) in neurons inhibited Slitrk6-induced, PTPσ-mediated heterologous synapse formation activity. We propose a synaptogenesis model in presynaptic neurons involving LAR-RPTP-organized retrograde signaling cascades, in which both extracellular and intracellular mechanisms are critical in orchestrating distinct synapse types.SIGNIFICANCE STATEMENT In this study, we sought to test the unproven hypothesis that PTPσ and PTPδ are required for excitatory and inhibitory synapse formation/transmission, respectively, in cultured hippocampal neurons, using knockdown-based loss-of-function analyses. We further performed extensive structure-function analyses, focusing on PTPσ-mediated actions, to address the mechanisms of presynaptic assembly at excitatory synaptic sites. Using interdisciplinary approaches, we systematically applied a varied set of PTPσ deletion variants, point mutants, and splice variants to demonstrate that both extracellular and intracellular mechanisms are involved in organizing presynaptic assembly. Strikingly, extracellular interactions of PTPσ with heparan sulfates and Slitrks, intracellular interactions of PTPσ with liprin-α and its associated proteins through the D2 domain, as well as distinct substrates are all critical.


Assuntos
Neurogênese/fisiologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Humanos , Neurônios/fisiologia , Ratos , Transdução de Sinais/fisiologia
11.
J Neurosci ; 38(26): 5872-5887, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29798891

RESUMO

SALM1 (SALM (synaptic adhesion-like molecule), also known as LRFN2 (leucine rich repeat and fibronectin type III domain containing), is a postsynaptic density (PSD)-95-interacting synaptic adhesion molecule implicated in the regulation of NMDA receptor (NMDAR) clustering largely based on in vitro data, although its in vivo functions remain unclear. Here, we found that mice lacking SALM1/LRFN2 (Lrfn2-/- mice) show a normal density of excitatory synapses but altered excitatory synaptic function, including enhanced NMDAR-dependent synaptic transmission but suppressed NMDAR-dependent synaptic plasticity in the hippocampal CA1 region. Unexpectedly, SALM1 expression was detected in both glutamatergic and GABAergic neurons and Lrfn2-/- CA1 pyramidal neurons showed decreases in the density of inhibitory synapses and the frequency of spontaneous inhibitory synaptic transmission. Behaviorally, ultrasonic vocalization was suppressed in Lrfn2-/- pups separated from their mothers and acoustic startle was enhanced, but locomotion, anxiety-like behavior, social interaction, repetitive behaviors, and learning and memory were largely normal in adult male Lrfn2-/- mice. These results suggest that SALM1/LRFN2 regulates excitatory synapse function, inhibitory synapse development, and social communication and startle behaviors in mice.SIGNIFICANCE STATEMENT Synaptic adhesion molecules regulate synapse development and function, which govern neural circuit and brain functions. The SALM/LRFN (synaptic adhesion-like molecule/leucine rich repeat and fibronectin type III domain containing) family of synaptic adhesion proteins consists of five known members for which the in vivo functions are largely unknown. Here, we characterized mice lacking SALM1/LRFN2 (SALM1 KO) known to associate with NMDA receptors (NMDARs) and found that these mice showed altered NMDAR-dependent synaptic transmission and plasticity, as expected, but unexpectedly also exhibited suppressed inhibitory synapse development and synaptic transmission. Behaviorally, SALM1 KO pups showed suppressed ultrasonic vocalization upon separation from their mothers and SALM1 KO adults showed enhanced responses to loud acoustic stimuli. These results suggest that SALM1/LRFN2 regulates excitatory synapse function, inhibitory synapse development, social communication, and acoustic startle behavior.


Assuntos
Glicoproteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Reflexo de Sobressalto/fisiologia , Vocalização Animal/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Comportamento Social , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
12.
Proc Natl Acad Sci U S A ; 112(6): 1874-9, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25624497

RESUMO

Leukocyte common antigen-related receptor protein tyrosine phosphatases--comprising LAR, PTPδ, and PTPσ--are synaptic adhesion molecules that organize synapse development. Here, we identify glypican 4 (GPC-4) as a ligand for PTPσ. GPC-4 showed strong (nanomolar) affinity and heparan sulfate (HS)-dependent interaction with the Ig domains of PTPσ. PTPσ bound only to proteolytically cleaved GPC-4 and formed additional complex with leucine-rich repeat transmembrane protein 4 (LRRTM4) in rat brains. Moreover, single knockdown (KD) of PTPσ, but not LAR, in cultured neurons significantly reduced the synaptogenic activity of LRRTM4, a postsynaptic ligand of GPC-4, in heterologous synapse-formation assays. Finally, PTPσ KD dramatically decreased both the frequency and amplitude of excitatory synaptic transmission. This effect was reversed by wild-type PTPσ, but not by a HS-binding-defective PTPσ mutant. Our results collectively suggest that presynaptic PTPσ, together with GPC-4, acts in a HS-dependent manner to maintain excitatory synapse development and function.


Assuntos
Encéfalo/metabolismo , Glipicanas/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Transmissão Sináptica/fisiologia , Análise de Variância , Animais , Western Blotting , Cromatografia de Afinidade , Cromatografia Líquida de Alta Pressão , Técnicas de Silenciamento de Genes , Vetores Genéticos/genética , Heparitina Sulfato/metabolismo , Imuno-Histoquímica , Imunoprecipitação , Hibridização In Situ , Proteínas de Repetições Ricas em Leucina , Espectrometria de Massas , Oligonucleotídeos/genética , Terminações Pré-Sinápticas/fisiologia , Ratos , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética
13.
J Neurosci ; 36(17): 4816-31, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27122038

RESUMO

UNLABELLED: Neurotrophin-3 (NT-3) is a secreted neurotrophic factor that binds neurotrophin receptor tyrosine kinase C (TrkC), which in turn binds to presynaptic protein tyrosine phosphatase σ (PTPσ) to govern excitatory synapse development. However, whether and how NT-3 cooperates with the TrkC-PTPσ synaptic adhesion pathway and TrkC-mediated intracellular signaling pathways in rat cultured neurons has remained unclear. Here, we report that NT-3 enhances TrkC binding affinity for PTPσ. Strikingly, NT-3 treatment bidirectionally regulates the synaptogenic activity of TrkC: at concentrations of 10-25 ng/ml, NT-3 further enhanced the increase in synapse density induced by TrkC overexpression, whereas at higher concentrations, NT-3 abrogated TrkC-induced increases in synapse density. Semiquantitative immunoblotting and optogenetics-based imaging showed that 25 ng/ml NT-3 or light stimulation at a power that produced a comparable level of NT-3 (6.25 µW) activated only extracellular signal-regulated kinase (ERK) and Akt, whereas 100 ng/ml NT-3 (light intensity, 25 µW) further triggered the activation of phospholipase C-γ1 and CREB independently of PTPσ. Notably, disruption of TrkC intracellular signaling pathways, extracellular ligand binding, or kinase activity by point mutations compromised TrkC-induced increases in synapse density. Furthermore, only sparse, but not global, TrkC knock-down in cultured rat neurons significantly decreased synapse density, suggesting that intercellular differences in TrkC expression level are critical for its synapse-promoting action. Together, our data demonstrate that NT-3 is a key factor in excitatory synapse development that may direct higher-order assembly of the TrkC/PTPσ complex and activate distinct intracellular signaling cascades in a concentration-dependent manner to promote competition-based synapse development processes. SIGNIFICANCE STATEMENT: In this study, we present several lines of experimental evidences to support the conclusion that neurotrophin-3 (NT-3) modulates the synaptic adhesion pathway involving neurotrophin receptor tyrosine kinase C (TrkC) and presynaptic protein tyrosine phosphatase σ (PTPσ) in a bidirectional manner at excitatory synapses. NT-3 acts in concentration-independent manner to facilitate TrkC-mediated presynaptic differentiation, whereas it acts in a concentration-dependent manner to exert differential effects on TrkC-mediated organization of postsynaptic development. We further investigated TrkC extracellular ligand binding, intracellular signaling pathways, and kinase activity in NT-3-induced synapse development. Last, we found that interneuronal differences in TrkC levels regulate the synapse number. Overall, these results suggest that NT-3 functions as a positive modulator of synaptogenesis involving TrkC and PTPσ.


Assuntos
Neurotrofina 3/metabolismo , Receptor trkC/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Sinapses/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipocampo , Neurônios/fisiologia , Ligação Proteica , Ratos , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Transdução de Sinais/efeitos dos fármacos , Sinapses/fisiologia
14.
J Biol Chem ; 291(19): 10119-30, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27002143

RESUMO

Gephyrin is a central scaffold protein that mediates development, function, and plasticity of mammalian inhibitory synapses by interacting with various inhibitory synaptic proteins. Here, we show that IQSEC3, a guanine nucleotide exchange factor for ARF6, directly interacts with gephyrin, an interaction that is critical for the inhibitory synapse localization of IQSEC3. Overexpression of IQSEC3 increases inhibitory, but not excitatory, synapse density in a guanine nucleotide exchange factor activity-dependent manner. Conversely, knockdown of IQSEC3 decreases size of gephyrin cluster without altering gephyrin puncta density. Collectively, these data reveal that IQSEC3 acts together with gephyrin to regulate inhibitory synapse development.


Assuntos
Proteínas de Transporte , Fatores de Troca do Nucleotídeo Guanina , Proteínas de Membrana , Sinapses , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ratos , Sinapses/genética , Sinapses/metabolismo
15.
Proc Natl Acad Sci U S A ; 110(10): 4057-62, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23345436

RESUMO

The balance between excitatory and inhibitory synaptic inputs, which is governed by multiple synapse organizers, controls neural circuit functions and behaviors. Slit- and Trk-like proteins (Slitrks) are a family of synapse organizers, whose emerging synaptic roles are incompletely understood. Here, we report that Slitrks are enriched in postsynaptic densities in rat brains. Overexpression of Slitrks promoted synapse formation, whereas RNAi-mediated knockdown of Slitrks decreased synapse density. Intriguingly, Slitrks were required for both excitatory and inhibitory synapse formation in an isoform-dependent manner. Moreover, Slitrks required distinct members of the leukocyte antigen-related receptor protein tyrosine phosphatase (LAR-RPTP) family to trigger synapse formation. Protein tyrosine phosphatase σ (PTPσ), in particular, was specifically required for excitatory synaptic differentiation by Slitrks, whereas PTPδ was necessary for inhibitory synapse differentiation. Taken together, these data suggest that combinatorial interactions of Slitrks with LAR-RPTP family members maintain synapse formation to coordinate excitatory-inhibitory balance.


Assuntos
Proteínas do Tecido Nervoso/fisiologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/fisiologia , Sinapses/fisiologia , Animais , Sequência de Bases , Encéfalo/fisiologia , Células Cultivadas , Técnicas de Silenciamento de Genes , Hipocampo/citologia , Hipocampo/fisiologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , RNA Interferente Pequeno/genética , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Regulação para Cima
16.
Proc Natl Acad Sci U S A ; 110(1): 336-41, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23248271

RESUMO

The MAM domain-containing GPI anchor proteins MDGA1 and MDGA2 are Ig superfamily adhesion molecules composed of six IG domains, a fibronectin III domain, a MAM domain, and a GPI anchor. MDGAs contribute to the radial migration and positioning of a subset of cortical neurons during early neural development. However, MDGAs continue to be expressed in postnatal brain, and their functions during postnatal neural development remain unknown. Here, we demonstrate that MDGAs specifically and with a nanomolar affinity bind to neuroligin-2, a cell-adhesion molecule of inhibitory synapses, but do not bind detectably to neuroligin-1 or neuroligin-3. We observed no cell adhesion between cells expressing neuroligin-2 and MDGA1, suggesting a cis interaction. Importantly, RNAi-mediated knockdown of MDGAs increased the abundance of inhibitory but not excitatory synapses in a neuroligin-2-dependent manner. Conversely, overexpression of MDGA1 decreased the numbers of functional inhibitory synapses. Likewise, coexpression of both MDGA1 and neuroligin-2 reduced the synaptogenic capacity of neuroligin-2 in an artificial synapse-formation assay by abolishing the ability of neuroligin-2 to form an adhesion complex with neurexins. Taken together, our data suggest that MDGAs inhibit the activity of neuroligin-2 in controlling the function of inhibitory synapses and that MDGAs do so by binding to neuroligin-2.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Imunoglobulinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Sinapses/fisiologia , Animais , Adesão Celular/fisiologia , Primers do DNA/genética , Proteínas Ligadas por GPI/metabolismo , Vetores Genéticos/genética , Células HEK293 , Hipocampo/citologia , Humanos , Immunoblotting , Imuno-Histoquímica , Hibridização In Situ , Microscopia de Fluorescência , Moléculas de Adesão de Célula Nervosa , Interferência de RNA , Ratos
17.
EMBO J ; 30(14): 2908-19, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21642956

RESUMO

Neuroligins are evolutionarily conserved postsynaptic cell-adhesion molecules that function, at least in part, by forming trans-synaptic complexes with presynaptic neurexins. Different neuroligin isoforms perform diverse functions and exhibit distinct intracellular localizations, but contain similar cytoplasmic sequences whose role remains largely unknown. Here, we analysed the effect of a single amino-acid substitution (R704C) that targets a conserved arginine residue in the cytoplasmic sequence of all neuroligins, and that was associated with autism in neuroligin-4. We introduced the R704C mutation into mouse neuroligin-3 by homologous recombination, and examined its effect on synapses in vitro and in vivo. Electrophysiological and morphological studies revealed that the neuroligin-3 R704C mutation did not significantly alter synapse formation, but dramatically impaired synapse function. Specifically, the R704C mutation caused a major and selective decrease in AMPA receptor-mediated synaptic transmission in pyramidal neurons of the hippocampus, without similarly changing NMDA or GABA receptor-mediated synaptic transmission, and without detectably altering presynaptic neurotransmitter release. Our results suggest that the cytoplasmic tail of neuroligin-3 has a central role in synaptic transmission by modulating the recruitment of AMPA receptors to postsynaptic sites at excitatory synapses.


Assuntos
Proteínas de Transporte/genética , Moléculas de Adesão Celular Neuronais/fisiologia , Hipocampo/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Mutação Puntual/genética , Receptores de AMPA/metabolismo , Transmissão Sináptica/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Transtorno Autístico , Células COS , Células Cultivadas , Chlorocebus aethiops , Citoplasma , Eletrofisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/metabolismo , Receptores de AMPA/genética , Recombinação Genética , Homologia de Sequência de Aminoácidos , Sinapses
18.
Proc Natl Acad Sci U S A ; 108(40): 16502-9, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21953696

RESUMO

Synaptic cell adhesion molecules, including the neurexin ligands, neuroligins (NLs) and leucine-rich repeat transmembrane proteins (LRRTMs), are thought to organize synapse assembly and specify synapse function. To test the synaptic role of these molecules in vivo, we performed lentivirally mediated knockdown of NL3, LRRTM1, and LRRTM2 in CA1 pyramidal cells of WT and NL1 KO mice at postnatal day (P)0 (when synapses are forming) and P21 (when synapses are largely mature). P0 knockdown of NL3 in WT or NL1 KO neurons did not affect excitatory synaptic transmission, whereas P0 knockdown of LRRTM1 and LRRTM2 selectively reduced AMPA receptor-mediated synaptic currents. P0 triple knockdown of NL3 and both LRRTMs in NL1 KO mice yielded greater reductions in AMPA and NMDA receptor-mediated currents, suggesting functional redundancy between NLs and LRRTMs during early synapse development. In contrast, P21 knockdown of LRRTMs did not alter excitatory transmission, whereas NL manipulations supported a role for NL1 in maintaining NMDA receptor-mediated transmission. These results show that neurexin ligands in vivo form a dynamic synaptic cell adhesion network, with compensation between NLs and LRRTMs during early synapse development and functional divergence upon synapse maturation.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Adesão Celular/fisiologia , Hipocampo/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Adesão Celular/genética , Moléculas de Adesão Celular Neuronais/genética , Técnicas de Silenciamento de Genes , Vetores Genéticos/genética , Hipocampo/citologia , Lentivirus , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Técnicas de Patch-Clamp , Transmissão Sináptica/genética
19.
Trends Cell Biol ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38853082

RESUMO

Astrocytes are multifaceted glial cell types that perform structural, functional, metabolic, and homeostatic roles in the brain. Recent studies have revealed mechanisms underlying the diversity of bidirectional communication modes between astrocytes and neurons - the fundamental organizing principle shaping synaptic properties at tripartite synapses. These astrocyte-neuron interactions are critical for the proper functioning of synapses and neural circuits. This review focuses on molecular mechanisms that direct these interactions, highlighting the versatile roles of multiple adhesion-based paths that likely modulate them, often in a context-dependent manner. It also describes how astrocyte-mediated processes go awry in certain brain disorders and provides a timely insight on the pivotal roles of astrocyte-neuron interactions in synaptic integrity and their relevance to understanding and treating neurological disorders.

20.
Nat Commun ; 15(1): 1624, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388459

RESUMO

LAR-RPTPs are evolutionarily conserved presynaptic cell-adhesion molecules that orchestrate multifarious synaptic adhesion pathways. Extensive alternative splicing of LAR-RPTP mRNAs may produce innumerable LAR-RPTP isoforms that act as regulatory "codes" for determining the identity and strength of specific synapse signaling. However, no direct evidence for this hypothesis exists. Here, using targeted RNA sequencing, we detected LAR-RPTP mRNAs in diverse cell types across adult male mouse brain areas. We found pronounced cell-type-specific patterns of two microexons, meA and meB, in Ptprd mRNAs. Moreover, diverse neural circuits targeting the same neuronal populations were dictated by the expression of different Ptprd variants with distinct inclusion patterns of microexons. Furthermore, conditional ablation of Ptprd meA+ variants at presynaptic loci of distinct hippocampal circuits impaired distinct modes of synaptic transmission and objection-location memory. Activity-triggered alterations of the presynaptic Ptprd meA code in subicular neurons mediates NMDA receptor-mediated postsynaptic responses in CA1 neurons and objection-location memory. Our data provide the evidence of cell-type- and/or circuit-specific expression patterns in vivo and physiological functions of LAR-RPTP microexons that are dynamically regulated.


Assuntos
Sinapses , Transmissão Sináptica , Camundongos , Animais , Masculino , Transmissão Sináptica/fisiologia , Sinapses/metabolismo , Transdução de Sinais , Neurônios/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA