Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Opin Neurol ; 37(4): 381-391, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38813835

RESUMO

PURPOSE OF REVIEW: To review recent clinical uses of low-field magnetic resonance imaging (MRI) to guide incorporation into neurological practice. RECENT FINDINGS: Use of low-field MRI has been demonstrated in applications including tumours, vascular pathologies, multiple sclerosis, brain injury, and paediatrics. Safety, workflow, and image quality have also been evaluated. SUMMARY: Low-field MRI has the potential to increase access to critical brain imaging for patients who otherwise may not obtain imaging in a timely manner. This includes areas such as the intensive care unit and emergency room, where patients could be imaged at the point of care rather than be transported to the MRI scanner. Such systems are often more affordable than conventional systems, allowing them to be more easily deployed in resource constrained settings. A variety of systems are available on the market or in a research setting and are currently being used to determine clinical uses for these devices. The utility of such devices must be fully evaluated in clinical scenarios before adoption into standard practice can be achieved. This review summarizes recent clinical uses of low-field MR as well as safety, workflows, and image quality to aid practitioners in assessing this new technology.


Assuntos
Imageamento por Ressonância Magnética , Doenças do Sistema Nervoso , Humanos , Imageamento por Ressonância Magnética/métodos , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/diagnóstico , Encéfalo/diagnóstico por imagem
2.
Mult Scler ; 28(3): 418-428, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34132126

RESUMO

BACKGROUND: Advanced magnetic resonance imaging (MRI) methods can provide more specific information about various microstructural tissue changes in multiple sclerosis (MS) brain. Quantitative measurement of T1 and T2 relaxation, and diffusion basis spectrum imaging (DBSI) yield metrics related to the pathology of neuroinflammation and neurodegeneration that occurs across the spectrum of MS. OBJECTIVE: To use relaxation and DBSI MRI metrics to describe measures of neuroinflammation, myelin and axons in different MS subtypes. METHODS: 103 participants (20 clinically isolated syndrome (CIS), 33 relapsing-remitting MS (RRMS), 30 secondary progressive MS and 20 primary progressive MS) underwent quantitative T1, T2, DBSI and conventional 3T MRI. Whole brain, normal-appearing white matter, lesion and corpus callosum MRI metrics were compared across MS subtypes. RESULTS: A gradation of MRI metric values was seen from CIS to RRMS to progressive MS. RRMS demonstrated large oedema-related differences, while progressive MS had the most extensive abnormalities in myelin and axonal measures. CONCLUSION: Relaxation and DBSI-derived MRI measures show differences between MS subtypes related to the severity and composition of underlying tissue damage. RRMS showed oedema, demyelination and axonal loss compared with CIS. Progressive MS had even more evidence of increased oedema, demyelination and axonal loss compared with CIS and RRMS.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Substância Branca , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Doenças Neuroinflamatórias , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
3.
Neuroimage ; 210: 116551, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31978542

RESUMO

PURPOSE: Based on a deep learning neural network (NN) algorithm, a super fast and easy to implement data analysis method was proposed for myelin water imaging (MWI) to calculate the myelin water fraction (MWF). METHODS: A NN was constructed and trained on MWI data acquired by a 32-echo 3D gradient and spin echo (GRASE) sequence. Ground truth labels were created by regularized non-negative least squares (NNLS) with stimulated echo corrections. Voxel-wise GRASE data from 5 brains (4 healthy, 1 multiple sclerosis (MS)) were used for NN training. The trained NN was tested on 2 healthy brains, 1 MS brain with segmented lesions, 1 healthy spinal cord, and 1 healthy brain acquired from a different scanner. RESULTS: Production of whole brain MWF maps in approximately 33 â€‹s can be achieved by a trained NN without graphics card acceleration. For all testing regions, no visual differences between NN and NNLS MWF maps were observed, and no obvious regional biases were found. Quantitatively, all voxels exhibited excellent agreement between NN and NNLS (all R2>0.98, p â€‹< â€‹0.001, mean absolute error <0.01). CONCLUSION: The time for accurate MWF calculation can be dramatically reduced to less than 1 â€‹min by the proposed NN, addressing one of the barriers facing future clinical feasibility of MWI.


Assuntos
Água Corporal/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Bainha de Mielina , Neuroimagem/métodos , Adulto , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Magn Reson Med ; 84(3): 1264-1279, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32065474

RESUMO

PURPOSE: Myelin water imaging (MWI) provides a valuable biomarker for myelin, but clinical application has been restricted by long acquisition times. Accelerating the standard multi-echo T2 acquisition with gradient echoes (GRASE) or by 2D multi-slice data collection results in image blurring, contrast changes, and other issues. Compressed sensing (CS) can vastly accelerate conventional MRI. In this work, we assessed the use of CS for in vivo human MWI, using a 3D multi spin-echo sequence. METHODS: We implemented multi-echo T2 relaxation imaging with compressed sensing (METRICS) and METRICS with partial Fourier acceleration (METRICS-PF). Scan-rescan data were acquired from 12 healthy controls for assessment of repeatability. MWI data were acquired for METRICS in 9 m:58 s and for METRICS-PF in 7 m:25 s, both with 1.5 × 2 × 3 mm3 voxels, 56 echoes, 7 ms ΔTE, and 240 × 240 × 170 mm3 FOV. METRICS was compared with a novel multi-echo spin-echo gold-standard (MSE-GS) MWI acquisition, acquired for a single additional subject in 2 h:2 m:40 s. RESULTS: METRICS/METRICS-PF myelin water fraction had mean: repeatability coefficient 1.5/1.1, coefficient of variation 6.2/4.5%, and intra-class correlation coefficient 0.79/0.84. Repeatability metrics comparing METRICS with METRICS-PF were similar, and both sequences agreed with reference values from literature. METRICS images and quantitative maps showed excellent qualitative agreement with those of MSE-GS. CONCLUSION: METRICS and METRICS-PF provided highly repeatable MWI data without the inherent disadvantages of GRASE or 2D multi-slice acquisition. CS acceleration allows MWI data to be acquired rapidly with larger FOV, higher estimated SNR, more isotropic voxels and more echoes than with previous techniques. The approach introduced here generalizes to any multi-component T2 mapping application.


Assuntos
Processamento de Imagem Assistida por Computador , Bainha de Mielina , Benchmarking , Humanos , Imageamento por Ressonância Magnética , Água
5.
Mult Scler ; 25(6): 811-818, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29663845

RESUMO

BACKGROUND: Tissue damage in both multiple sclerosis (MS) lesions and normal-appearing white matter (NAWM) are important contributors to disability and progression. Specific aspects of MS pathology can be measured using advanced imaging. Alemtuzumab is a humanised monoclonal antibody targeting CD52 developed for MS treatment. OBJECTIVE: To investigate changes over 2 years of advanced magnetic resonance (MR) metrics in lesions and NAWM of MS patients treated with alemtuzumab. METHODS: A total of 42 relapsing-remitting alemtuzumab-treated MS subjects were scanned for 2 years at 3 T. T1 relaxation, T2 relaxation, diffusion tensor, MR spectroscopy and volumetric sequences were performed. Mean T1 and myelin water fraction (MWF) were determined for stable lesions, new lesions and NAWM. Fractional anisotropy was calculated for the corpus callosum (CC) and N-acetylaspartate (NAA) concentration was determined from a large NAWM voxel. Brain parenchymal fraction (BPF), cortical thickness and CC area were also calculated. RESULTS: No change in any MR measurement was found in lesions or NAWM over 24 months. BPF, cortical thickness and CC area all showed decreases in the first year followed by stability in the second year. CONCLUSION: Advanced MR biomarkers of myelin (MWF) and neuron/axons (NAA) show no change in NAWM over 24 months in alemtuzumab-treated MS participants.


Assuntos
Alemtuzumab/farmacologia , Progressão da Doença , Fatores Imunológicos/farmacologia , Esclerose Múltipla Recidivante-Remitente , Substância Branca , Adulto , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/patologia , Resultado do Tratamento , Substância Branca/diagnóstico por imagem , Substância Branca/efeitos dos fármacos , Substância Branca/patologia
6.
Mult Scler ; 24(12): 1557-1568, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28782447

RESUMO

BACKGROUND: Reduced myelin water fraction (MWF, a marker for myelin), increased geometric mean T2 (ieGMT2, reflecting intra/extracellular water properties), and increased T1 (related to total water content) have been observed in cross-sectional studies of multiple sclerosis (MS) normal-appearing white matter (NAWM). OBJECTIVE: To assess longitudinal changes of magnetic resonance (MR) measures in relapsing-remitting MS (RRMS) brain NAWM. METHODS: A total of 11 subjects with RRMS and 4 controls were scanned on a 3T MRI at baseline and long-term follow-up (LTFU; 3.2-5.8 years) with a 32-echo T2 relaxation and an inversion recovery T1 sequence. For every voxel, MWF, ieGMT2, and T1 were obtained. Mean, peak height, and peak location from NAWM mask-based histograms were determined. RESULTS: In MS subjects, NAWM MWF mean decreased by 8% ( p = 0.0016). No longitudinal changes were measured in T1 or ieGMT2. There was no relationship between change in any MR metric and change in EDSS. Control white matter showed no differences over time in any metric. CONCLUSION: The decreases we observed in MWF suggest that changes in myelin integrity and loss of myelin may be occurring diffusely and over long time periods in the MS brain. The timescale of these changes indicates that chronic, progressive myelin damage is an evolving process occurring over many years.


Assuntos
Encéfalo/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Bainha de Mielina/patologia , Substância Branca/patologia , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Água/análise , Substância Branca/diagnóstico por imagem
7.
Neuroimage ; 131: 162-70, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26654786

RESUMO

The hippocampus has been shown to demonstrate a remarkable degree of plasticity in response to a variety of tasks and experiences. For example, the size of the human hippocampus has been shown to increase in response to aerobic exercise. However, it is currently unknown what underlies these changes. Here we scanned sedentary, young to middle-aged human adults before and after a six-week exercise intervention using nine different neuroimaging measures of brain structure, vasculature, and diffusion. We then tested two different hypotheses regarding the nature of the underlying changes in the tissue. Surprisingly, we found no evidence of a vascular change as has been previously reported. Rather, the pattern of changes is better explained by an increase in myelination. Finally, we show that hippocampal volume increase is temporary, returning to baseline after an additional six weeks without aerobic exercise. This is the first demonstration of a change in hippocampal volume in early to middle adulthood suggesting that hippocampal volume is modulated by aerobic exercise throughout the lifespan rather than only in the presence of age related atrophy. It is also the first demonstration of hippocampal volume change over a period of only six weeks, suggesting that gross morphometric hippocampal plasticity occurs faster than previously thought.


Assuntos
Envelhecimento/fisiologia , Circulação Cerebrovascular/fisiologia , Exercício Físico/fisiologia , Hipocampo/fisiologia , Neuroimagem/métodos , Plasticidade Neuronal/fisiologia , Adulto , Envelhecimento/patologia , Velocidade do Fluxo Sanguíneo/fisiologia , Feminino , Hipocampo/anatomia & histologia , Humanos , Masculino , Imagem Multimodal/métodos , Tamanho do Órgão/fisiologia , Condicionamento Físico Humano/métodos
8.
J Magn Reson Imaging ; 44(2): 296-304, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26825048

RESUMO

PURPOSE: To determine whether differences in hydration state, which could arise from routine clinical procedures such as overnight fasting, affect brain total water content (TWC) and brain volume measured with magnetic resonance imaging (MRI). MATERIALS AND METHODS: Twenty healthy volunteers were scanned with a 3T MR scanner four times: day 1, baseline scan; day 2, hydrated scan after consuming 3L of water over 12 hours; day 3, dehydrated scan after overnight fasting of 9 hours, followed by another scan 1 hour later for reproducibility. The following MRI data were collected: T2 relaxation (for TWC measurement), inversion recovery (for T1 measurement), and 3D T1 -weighted (for brain volumes). Body weight and urine specific gravity were also measured. TWC was calculated by fitting the T2 relaxation data with a nonnegative least-squares algorithm, with corrections for T1 relaxation and image signal inhomogeneity and normalization to ventricular cerebrospinal fluid. Brain volume changes were measured using SIENA. TWC means were calculated within 14 tissue regions. RESULTS: Despite indications of dehydration as demonstrated by increases in urine specific gravity (P = 0.03) and decreases in body weight (P = 0.001) between hydrated and dehydrated scans, there was no measurable change in TWC (within any brain region) or brain volume between hydration states. CONCLUSION: We demonstrate that within a range of physiologic conditions commonly encountered in routine clinical scans (no pretreatment with hydration, well hydrated before MRI, and overnight fasting), brain TWC and brain volumes are not substantially affected in a healthy control cohort. J. Magn. Reson. Imaging 2016;44:296-304.


Assuntos
Água Corporal/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imagem de Difusão por Ressonância Magnética/métodos , Ingestão de Líquidos/fisiologia , Jejum/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Adulto , Encéfalo/anatomia & histologia , Água Potável , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão/fisiologia , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Privação de Água/fisiologia
9.
Mult Scler ; 22(1): 43-50, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25948623

RESUMO

BACKGROUND: Both multiple sclerosis (MS) and neuromyelitis optica (NMO) can present with transverse myelitis; however, NMO symptoms are usually more severe and may present with more extensive axonal loss. Transcranial magnetic stimulation (TMS)-based input-output recruitment curves can quantitatively assess the excitability of corticospinal tract pathways and myelin water imaging can quantify the amount of myelin within this same pathway. OBJECTIVE: To compare differential effects of MS and NMO on TMS recruitment curves and myelin water imaging. METHODS: Ten healthy controls, 10 individuals with MS and 10 individuals with NMO completed clinical assessments, a TMS assessment and magnetic resonance imaging scan to measure recruitment curves and myelin water fraction in the corticospinal tract. RESULTS: Individuals with NMO had lower recruitment curve slopes (mean 13.6±6 µV/%) than MS (23.6±11 µV/%) and controls (21.9±9 µV/%, analysis of variance (ANOVA) P=0.05). Corticospinal tract myelin water fraction was lower in individuals with NMO (mean 0.17±0.02) compared to MS (0.19±0.02) and controls (0.20±0.02, ANOVA P=0.0006). CONCLUSION: Corticospinal pathway damage in individuals with NMO was evident by reduced recruitment curve slope and lower myelin water fraction. These specific measures of corticospinal function and structure may be used to obtain a better understanding and monitor brain injury caused by inflammatory central nervous system disorders.


Assuntos
Esclerose Múltipla/patologia , Esclerose Múltipla/fisiopatologia , Neuromielite Óptica/patologia , Neuromielite Óptica/fisiopatologia , Tratos Piramidais/patologia , Tratos Piramidais/fisiopatologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estimulação Magnética Transcraniana
10.
Magn Reson Med ; 74(5): 1327-35, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25399771

RESUMO

PURPOSE: A steady-state approach that was termed multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) has recently been proposed for myelin water fraction (fM) mapping in brain development and demyelinating diseases. However, fMs estimated by mcDESPOT are significantly higher than myelin water fraction derived from multiecho spin echo T2-decay curve approaches. Magnetization transfer (MT), enhanced by the use of short, relatively high amplitude radiofrequency (RF) pulses in mcDESPOT, may artifactually influence fM maps. Our goal was to investigate the role of MT in mcDESPOT. METHODS: mcDESPOT data was collected twice from three healthy volunteers using short RF pulses with higher MT effect and long RF pulses with lower MT effect. MR parameters from 11 white and gray regions were compared using a paired student t-test. Whole slice difference images were also compared. RESULTS: MT effects had a substantial influence on the signal generated by the balanced steady-state free procession sequences used in mcDESPOT. However, these MT effects were not clearly evident in the fM values determined by the conventional two-pool mcDESPOT analysis. CONCLUSION: The signal generated from mcDESPOT is sensitive to MT, but the extracted myelin water fractions are relatively insensitive to changes of MT.


Assuntos
Encéfalo/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Masculino , Modelos Biológicos , Bainha de Mielina/química , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Água/química , Adulto Jovem
11.
Magn Reson Med ; 73(1): 161-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24464472

RESUMO

PURPOSE: Multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) is an alternative to established multiecho T2 -based approaches for quantifying myelin water fraction, affording increased volumetric coverage and spatial resolution. A concern with mcDESPOT, however, is the large number of model parameters that must be estimated, which may lead to nonunique solutions and sensitivity to fitting constraints. Here we explore mcDESPOT performance under different experimental conditions to better understand the method's sensitivity and reliability. METHODS: To obtain parameter estimates, mcDESPOT uses a stochastic region contraction (SRC) approach to iteratively contract a predefined solution search-space around a global optimum. The sensitivity of mcDESPOT estimates to SRC boundary conditions, and tissue parameters, was examined using numerical phantoms and acquired in vivo human data. RESULTS: The SRC approach is described and shown to return robust myelin water estimates in both numerical phantoms and in vivo data under a range of experimental conditions. However, care must be taken in choosing the initial SRC boundary conditions, ensuring they are broad enough to encompass the "true" solution. CONCLUSION: Results suggest that under the range of conditions examined, mcDESPOT can provide stabile and precise values.


Assuntos
Água Corporal/metabolismo , Encéfalo/metabolismo , Interpretação de Imagem Assistida por Computador/métodos , Imagem Molecular/métodos , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Algoritmos , Encéfalo/patologia , Simulação por Computador , Interpretação Estatística de Dados , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processos Estocásticos
12.
Magn Reson Med ; 73(1): 223-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24515972

RESUMO

PURPOSE: Myelin water fraction is conventionally measured from the T2 decay curve. Recently, a steady-state approach entitled multicomponent-driven equilibrium single pulse observation of T1 /T2 (mcDESPOT) was employed for myelin water fraction mapping. However, no direct comparison between the established multiecho T2 relaxation method and mcDESPOT has been performed. METHODS: Gradient and spin echo (GRASE) acquired T2 decay curve and mcDESPOT measurements were acquired from 10 healthy volunteers using a 3T MRI. We compared myelin water fraction, transmit radio frequency field (B1 ), and T2 's of intra- and extracellular water obtained from both methods. RESULTS: For all brain regions examined, myelin water fractions from mcDESPOT were significantly higher than those from multiecho GRASE. B1 maps were qualitatively similar between GRASE and mcDESPOT, but multicomponent T2 times were significantly different. To investigate the effect of exchange, mcDESPOT data were analyzed with and without exchange. When exchange was turned off, intra- and extracellular T2 times from mcDESPOT were roughly consistent with GRASE results; however, myelin water fractions derived from mcDESPOT were still significantly higher than those derived from GRASE. CONCLUSION: Myelin water fraction values derived from mcDESPOT cannot be considered to be equivalent to those derived from T2 decay curve approaches.


Assuntos
Água Corporal/química , Química Encefálica , Imagem Ecoplanar/métodos , Interpretação de Imagem Assistida por Computador/métodos , Bainha de Mielina/química , Fibras Nervosas Mielinizadas/química , Adulto , Algoritmos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Molecular/métodos , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
13.
Skeletal Radiol ; 43(3): 331-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24357123

RESUMO

OBJECTIVE: To evaluate the effect of metal artifact reduction techniques on dGEMRIC T(1) calculation with surgical hardware present. MATERIALS AND METHODS: We examined the effect of stainless-steel and titanium hardware on dGEMRIC T(1) maps. We tested two strategies to reduce metal artifact in dGEMRIC: (1) saturation recovery (SR) instead of inversion recovery (IR) and (2) applying the metal artifact reduction sequence (MARS), in a gadolinium-doped agarose gel phantom and in vivo with titanium hardware. T(1) maps were obtained using custom curve-fitting software and phantom ROIs were defined to compare conditions (metal, MARS, IR, SR). RESULTS: A large area of artifact appeared in phantom IR images with metal when T(I) ≤ 700 ms. IR maps with metal had additional artifact both in vivo and in the phantom (shifted null points, increased mean T(1) (+151 % IR ROI(artifact)) and decreased mean inversion efficiency (f; 0.45 ROI(artifact), versus 2 for perfect inversion)) compared to the SR maps (ROI(artifact): +13 % T(1) SR, 0.95 versus 1 for perfect excitation), however, SR produced noisier T(1) maps than IR (phantom SNR: 118 SR, 212 IR). MARS subtly reduced the extent of artifact in the phantom (IR and SR). CONCLUSIONS: dGEMRIC measurement in the presence of surgical hardware at 3T is possible with appropriately applied strategies. Measurements may work best in the presence of titanium and are severely limited with stainless steel. For regions near hardware where IR produces large artifacts making dGEMRIC analysis impossible, SR-MARS may allow dGEMRIC measurements. The position and size of the IR artifact is variable, and must be assessed for each implant/imaging set-up.


Assuntos
Artefatos , Placas Ósseas , Cartilagem Articular/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Articulação do Joelho/anatomia & histologia , Articulação do Joelho/cirurgia , Feminino , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Aço Inoxidável , Titânio
14.
Magn Reson Med ; 70(1): 147-54, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22915316

RESUMO

Quantitative myelin content imaging provides novel and pertinent information related to underlying pathogenetic mechanisms of myelin-related disease or disorders arising from aberrant connectivity. Multicomponent driven equilibrium single pulse observation of T1 and T2 is a time-efficient multicomponent relaxation analysis technique that provides estimates of the myelin water fraction, a surrogate measure of myelin volume. Unfortunately, multicomponent driven equilibrium single pulse observation of T1 and T2 relies on a two water-pool model (myelin-associated water and intra/extracellular water), which is inadequate within partial volume voxels, i.e., containing brain tissue and ventricle or meninges, resulting in myelin water fraction underestimation. To address this, a third, nonexchanging "free-water" component was introduced to the multicomponent driven equilibrium single pulse observation of T1 and T2 model. Numerical simulations and experimental in vivo data show that the model to perform advantageously within partial volume regions while providing robust and reproducible results. It is concluded that this model is preferable for future studies and analysis.


Assuntos
Encéfalo/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Imagem Molecular/métodos , Bainha de Mielina/patologia , Medula Espinal/patologia , Adulto , Idoso de 80 Anos ou mais , Água Corporal/citologia , Feminino , Humanos , Lactente , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
15.
Sci Adv ; 9(44): eadh9853, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37910622

RESUMO

Quantitative magnetic resonance imaging (MRI) techniques are powerful tools for the study of human tissue, but, in practice, their utility has been limited by lengthy acquisition times. Here, we introduce the Constrained, Adaptive, Low-dimensional, Intrinsically Precise Reconstruction (CALIPR) framework in the context of myelin water imaging (MWI); a quantitative MRI technique generally regarded as the most rigorous approach for noninvasive, in vivo measurement of myelin content. The CALIPR framework exploits data redundancy to recover high-quality images from a small fraction of an imaging dataset, which allowed MWI to be acquired with a previously unattainable sequence (fully sampled acquisition 2 hours:57 min:20 s) in 7 min:26 s (4.2% of the dataset, acceleration factor 23.9). CALIPR quantitative metrics had excellent precision (myelin water fraction mean coefficient of variation 3.2% for the brain and 3.0% for the spinal cord) and markedly increased sensitivity to demyelinating disease pathology compared to a current, widely used technique. The CALIPR framework facilitates drastically improved MWI and could be similarly transformative for other quantitative MRI applications.


Assuntos
Bainha de Mielina , Água , Humanos , Bainha de Mielina/patologia , Imageamento por Ressonância Magnética/métodos , Medula Espinal/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
16.
J Neuroimaging ; 33(2): 227-234, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36443960

RESUMO

BACKGROUND AND PURPOSE: Conventional MRI measures of multiple sclerosis (MS) disease severity, such as lesion volume and brain atrophy, do not provide information about microstructural tissue changes, which may be driving physical and cognitive progression. Myelin damage in normal-appearing white matter (NAWM) is likely an important contributor to MS disability. Myelin water fraction (MWF) provides quantitative measurements of myelin. Mean MWF reflects average myelin content, while MWF standard deviation (SD) describes variation in myelin within regions. The myelin heterogeneity index (MHI = SD/mean MWF) is a composite metric of myelin content and myelin variability. We investigated how mean MWF, SD, and MHI compare in differentiating MS from controls and their associations with physical and cognitive disability. METHODS: Myelin water imaging data were acquired from 91 MS participants and 31 healthy controls (HC). Segmented whole-brain NAWM and corpus callosum (CC) NAWM, mean MWF, SD, and MHI were compared between groups. Associations of mean MWF, SD, and MHI with Expanded Disability Status Scale and Symbol Digit Modalities Test were assessed. RESULTS: NAWM and CC MHI had the highest area under the curve: .78 (95% confidence interval [CI]: .69, .86) and .84 (95% CI: .76, .91), respectively, distinguishing MS from HC. CONCLUSIONS: Mean MWF, SD, and MHI provide complementary information when assessing regional and global NAWM abnormalities in MS and associations with clinical outcome measures. Examining all three metrics (mean MWF, SD, and MHI) enables a more detailed interpretation of results, depending on whether regions of interest include areas that are more heterogeneous, earlier in the demyelination process, or uniformly injured.


Assuntos
Esclerose Múltipla , Substância Branca , Humanos , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Substância Branca/patologia , Imageamento por Ressonância Magnética/métodos , Água , Encéfalo/patologia
17.
J Neuroimaging ; 32(1): 5-16, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34752664

RESUMO

MRI enables detailed in vivo depiction of multiple sclerosis (MS) pathology. Localized areas of MS damage, commonly referred to as lesions, or plaques, have been a focus of clinical and research MRI studies for over four decades. A nonplaque MRI abnormality which is present in at least 25% of MS patients but has received far less attention is diffusely abnormal white matter (DAWM). DAWM has poorly defined boundaries and a signal intensity that is between normal-appearing white matter and classic lesions on proton density and T2 -weighted images. All clinical phenotypes of MS demonstrate DAWM, including clinically isolated syndrome, where DAWM is associated with higher lesion volume, reduced brain volume, and earlier conversion to MS. Advanced MRI metric abnormalities in DAWM tend to be greater than those in NAWM, but not as severe as focal lesions, with myelin, axons, and water-related changes commonly reported. Histological studies demonstrate a primary lipid abnormality in DAWM, with some axonal damage and lesser involvement of myelin proteins. This review provides an overview of DAWM identification, summarizes in vivo and postmortem observations, and comments on potential pathophysiological mechanisms, which may underlie DAWM in MS. Given the prevalence and potential clinical impact of DAWM, the number of imaging studies focusing on DAWM is insufficient. Characterization of DAWM significance and microstructure would benefit from larger longitudinal and additional quantitative imaging efforts. Revisiting data from previous studies that included proton density and T2 imaging would enable retrospective DAWM identification and analysis.


Assuntos
Esclerose Múltipla , Substância Branca , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Estudos Retrospectivos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
18.
Mult Scler Relat Disord ; 68: 104238, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36274287

RESUMO

MRI-based myelin water fraction (MWF) and PET-based Pittsburgh compound B (PiB) imaging both have potential to measure myelin in multiple sclerosis (MS). We characterised the differences in MWF and PiB binding in MS lesions relative to normal-appearing white matter and assessed the correlation between MWF and PiB binding in 11 MS participants and 3 healthy controls within 14 white matter regions of interest. Both PiB binding and MWF were reduced in MS lesions relative to NAWM, and a modest within subject correlation between MWF and PiB binding was found. This pilot study shows that MWF and PET-PiB provide different information about myelin loss in MS.


Assuntos
Esclerose Múltipla , Substância Branca , Humanos , Bainha de Mielina/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Projetos Piloto , Água/análise , Substância Branca/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia
19.
Mult Scler Relat Disord ; 57: 103366, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35158472

RESUMO

BACKGROUND: Neurofilaments are cytoskeletal proteins that are detectable in the blood after neuroaxonal injury. Multiple sclerosis (MS) disease progression, greater lesion volume, and brain atrophy are associated with higher levels of serum neurofilament light chain (NfL), but few studies have examined the relationship between NfL and advanced magnetic resonance imaging (MRI) measures related to myelin and axons. We assessed the relationship between serum NfL and brain MRI measures in a diverse group of MS participants. METHODS AND MATERIALS: 103 participants (20 clinically isolated syndrome, 33 relapsing-remitting, 30 secondary progressive, 20 primary progressive) underwent 3T MRI to obtain myelin water fraction (MWF), geometric mean T2 (GMT2), water content, T1; high angular resolution diffusion imaging (HARDI)-derived axial diffusivity (AD), radial diffusivity (RD), fractional anisotropy (FA); diffusion basis spectrum imaging (DBSI)-derived AD, RD, FA; restricted, hindered, water and fiber fractions; and volume measurements of normalized brain, lesion, thalamic, deep gray matter (GM), and cortical thickness. Multiple linear regressions assessed the strength of association between serum NfL (dependent variable) and each MRI measure in whole brain (WB), normal appearing white matter (NAWM) and T2 lesions (independent variables), while controlling for age, expanded disability status scale, and disease duration. RESULTS: Serum NfL levels were significantly associated with metrics of axonal damage (FA: R2WB-HARDI = 0.29, R2NAWM-HARDI = 0.31, R2NAWM-DBSI = 0.30, R2Lesion-DBSI = 0.31; AD: R2WB-HARDI=0.31), myelin damage (MWF: R2WB = 0.29, R2NAWM = 0.30, RD: R2WB-HARDI = 0.32, R2NAWM-HARDI = 0.34, R2Lesion-DBSI = 0.30), edema and inflammation (T1: R2Lesion = 0.32; GMT2: R2WB = 0.31, R2Lesion = 0.31), and cellularity (restricted fraction R2WB = 0.30, R2NAWM = 0.32) across the entire MS cohort. Higher serum NfL levels were associated with significantly higher T2 lesion volume (R2 = 0.35), lower brain structure volumes (thalamus R2 = 0.31; deep GM R2 = 0.33; normalized brain R2 = 0.31), and smaller cortical thickness R2 = 0.31). CONCLUSION: The association between NfL and myelin MRI markers suggest that elevated serum NfL is a useful biomarker that reflects not only acute axonal damage, but also damage to myelin and inflammation, likely due to the known synergistic myelin-axon coupling relationship.


Assuntos
Esclerose Múltipla , Substância Branca , Axônios , Biomarcadores , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Humanos , Filamentos Intermediários , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Bainha de Mielina , Substância Branca/diagnóstico por imagem
20.
Mult Scler J Exp Transl Clin ; 8(1): 20552173211070760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35024164

RESUMO

BACKGROUND: Spinal cord atrophy provides a clinically relevant metric for monitoring MS. However, the spinal cord is imaged far less frequently than brain due to artefacts and acquisition time, whereas MRI of the brain is routinely performed. OBJECTIVE: To validate spinal cord cross-sectional area measurements from routine 3DT1 whole-brain MRI versus those from dedicated cord MRI in healthy controls and people with MS. METHODS: We calculated cross-sectional area at C1 and C2/3 using T2*-weighted spinal cord images and 3DT1 brain images, for 28 healthy controls and 73 people with MS. Correlations for both groups were assessed between: (1) C1 and C2/3 using cord images; (2) C1 from brain and C1 from cord; and (3) C1 from brain and C2/3 from cord. RESULTS AND CONCLUSION: C1 and C2/3 from cord were strongly correlated in controls (r = 0.94, p<0.0001) and MS (r = 0.85, p<0.0001). There was strong agreement between C1 from brain and C2/3 from cord in controls (r = 0.84, p<0.0001) and MS (r = 0.81, p<0.0001). This supports the use of C1 cross-sectional area calculated from brain imaging as a surrogate for the traditional C2/3 cross-sectional area measure for spinal cord atrophy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA