Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36559906

RESUMO

In this paper, we report a simple modification of a commercially available printer with fused deposition modeling (FDM) technology for the implementation of extrusion printing of hydrogels. The main difference between an FDM printer and a gel-extrusion printer is their material propulsion system, which has to deal with ether a solid rod or liquid. By application of plastic 3D printing on an FDM printer, specific details, namely, the plunger system and parts of the gel supply system, were produced and combined with a modified printer. Two types of printing of polymer hydrogels were optimized: droplet and filament modes. The rheological ranges suitable for printing for each method were indicated, and the resolution of the samples obtained and the algorithms for creating g-code via Python scripts were given. We have shown the possibility of droplet printing of microspheres with a diameter of 100 microns and a distance between spheres of 200 microns, as well as filament printing of lines with a thickness of 300-2000 microns, which is appropriate accuracy in comparison with commercial printers. This method, in addition to scientific groups, will be especially promising for educational tasks (as a practical work for engineering students or for the introduction of 3D printing into school classes) and industrial groups, as a way to implement 3D extrusion printing of composite polymer hydrogels in a time- and cost-effective way.

2.
Polymers (Basel) ; 15(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36616395

RESUMO

Coacervation is a self-assembly strategy based on the complexation of polyelectrolytes, which is utilized in biomedicine and agriculture, as well as automotive and textile industries. In this paper, we developed a new approach to the on-demand periodic formation of polyelectrolyte complexes through a Liesegang-type hierarchical organization. Adjustment of reaction conditions allows us to assemble materials with a tunable spatiotemporal geometry and establish materials' production cycles with a regulated periodicity. The proposed methodology allows the membrane to self-assemble when striving to reach balance and self-heal after exposure to external stimuli, such as potential difference and high pH. Using chronopotentiometry, K+ ion permeability behavior of the PEI-PSS coacervate membranes was demonstrated. The periodically self-assembled polyelectrolyte nanomembranes could further be integrated into novel energy storage devices and intelligent biocompatible membranes for bionics, soft nanorobotics, biosensing, and biocomputing.

3.
Nanoscale ; 13(15): 7375-7380, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33889896

RESUMO

New SERS detection platforms are required for the quick and easy preparation of sensing devices for food, agriculture, and environmental science. For quantitative sensing, it is important that a sensing material, in addition to efficient sensing, provides extraction and concentration of the target molecules such as toxic pesticides or healthy vitamins. We design such films adopting the Liesegang rings formation process that includes the reaction-diffusion of silver nitrate and melamine followed by the precipitation of different intermediates and their reduction by light in a pectin medium. Surprisingly, we find that the presence of melamine provides an excellent substrate for the extraction of pollutants at the solid-liquid interface giving rise to a powerful but easy and fast method for the quantification of fruits' quality. The complex silver and melamine containing films show high sensitivity even at relatively low silver concentrations.


Assuntos
Análise Espectral Raman , Triazinas
4.
ACS Omega ; 5(14): 7809-7814, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32309690

RESUMO

In the present work, transparent flexible thin polymer films with silver patterns have been created. The resulting structures made by the printing method represent a new alternative approach for recording, protecting, and transmitting information as well as for nonlinear gradient material formation. An alphabet for process automatization was created, and an automated system for recording and reading information was developed. To protect the information, we suggest the usage of a classic XOR function: the idea of scrambling is to demonstrate the simple and clear example of coding the ITMO University logo, and the code is provided. Additionally, the resulting samples are functional gradient materials with peaks of surface plasmon resonance. In the following, automated peak decoding by UV-vis spectroscopy allows an additional physicochemical method for structure decoding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA