Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci Res ; 99(7): 1802-1814, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33740288

RESUMO

Working memory (WM) is the ability to hold on-line and manipulate information. The prefrontal cortex (PFC) is a key brain region involved in WM, while the hippocampus is also involved, particularly, in spatial WM. Although several studies have investigated the neuronal substrates of WM in trained animals, the effects and the mechanisms underlying learning WM tasks have not been explored. In our study, we investigated the effects of learning WM tasks in mice on the function of PFC and hippocampus, by training mice in the delayed alternation task for 9 days (adaptive group). This group was compared to naïve mice (which stayed in their homecage) and mice trained in the alternation procedure only (non-adaptive). Following training, a cohort of mice (Experiment A) was tested in the left-right discrimination task and the reversal learning task, while another cohort (Experiment B) was tested in the attention set-shifting task (AST). The adaptive group performed significantly better in the reversal learning task (Experiment A) and AST (Experiment B), compared to non-adaptive and naïve groups. At the end of the behavioral experiments in Experiment A, field excitatory post-synaptic potential (fEPSP) recordings were performed in PFC and hippocampal brain slices. The adaptive group had enhanced the long-term potentiation (LTP) in the PFC, compared to the other groups. In the hippocampus, both the adaptive and the non-adaptive groups exhibited increased fEPSP compared to the naïve group, but no differences in LTP. In Experiment B, the dendritic spine density was measured, which, in the PFC, was found increased in the adaptive group, compared to the non-adaptive and naïve groups. In the hippocampus, there was an increase in mature dendritic spine density in the adaptive group, compared to the other two groups. Our results indicate a role for LTP and dendritic spine density in learning WM tasks.


Assuntos
Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Espinhas Dendríticas/fisiologia , Potenciais Pós-Sinápticos Excitadores , Masculino , Camundongos
2.
J Neurophysiol ; 119(3): 822-833, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167323

RESUMO

Adolescence is a highly vulnerable period for the emergence of major neuropsychological disorders and is characterized by decreased cognitive control and increased risk-taking behavior and novelty-seeking. The prefrontal cortex (PFC) is involved in the cognitive control of impulsive and risky behavior. Although the PFC is known to reach maturation later than other cortical areas, little information is available regarding the functional changes from adolescence to adulthood in PFC, particularly compared with other primary cortical areas. This study aims to understand the development of PFC-mediated, compared with non-PFC-mediated, cognitive functions. Toward this aim, we performed cognitive behavioral tasks in adolescent and adult mice and subsequently investigated synaptic plasticity in two different cortical areas. Our results showed that adolescent mice exhibit impaired performance in PFC-dependent cognitive tasks compared with adult mice, whereas their performance in non-PFC-dependent tasks is similar to that of adults. Furthermore, adolescent mice exhibited decreased long-term potentiation (LTP) within upper-layer synapses of the PFC but not the barrel cortex. Blocking GABAA receptor function significantly augments LTP in both the adolescent and adult PFC. No change in intrinsic excitability of PFC pyramidal neurons was observed between adolescent and adult mice. Finally, increased expression of the NR2A subunit of the N-methyl-d-aspartate receptors is found only in the adult PFC, a change that could underlie the emergence of LTP. In conclusion, our results demonstrate physiological and behavioral changes during adolescence that are specific to the PFC and could underlie the reduced cognitive control in adolescents. NEW & NOTEWORTHY This study reports that adolescent mice exhibit impaired performance in cognitive functions dependent on the prefrontal cortex but not in cognitive functions dependent on other cortical regions. The current results propose reduced synaptic plasticity in the upper layers of the prefrontal cortex as a cellular correlate of this weakened cognitive function. This decreased synaptic plasticity is due to reduced N-methyl-d-aspartate receptor expression but not due to dampened intrinsic excitability or enhanced GABAergic signaling during adolescence.


Assuntos
Cognição/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Comportamento Animal , Masculino , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reconhecimento Psicológico/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento
3.
iScience ; 27(2): 108821, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38333701

RESUMO

The human brain is characterized by the upregulation of synaptic, mainly glutamatergic, transmission, but its evolutionary origin(s) remain elusive. Here we approached this fundamental question by studying mice transgenic (Tg) for GLUD2, a human gene involved in glutamate metabolism that emerged in the hominoid and evolved concomitantly with brain expansion. We demonstrate that Tg mice express the human enzyme in hippocampal astrocytes and CA1-CA3 pyramidal neurons. LTP, evoked by theta-burst stimulation, is markedly enhanced in the CA3-CA1 synapses of Tg mice, with patch-clamp recordings from CA1 pyramidal neurons revealing increased sNMDA currents. LTP enhancement is blocked by D-lactate, implying that GLUD2 potentiates L-lactate-mediated astrocyte-neuron interaction. Dendritic spine density and synaptogenesis are increased in the hippocampus of Tg mice, which exhibit enhanced responses to sensory stimuli and improved performance on complex memory tasks. Hence, GLUD2 likely contributed to human brain evolution by enhancing synaptic plasticity and metabolic processes central to cognitive functions.

4.
Med Sci Monit ; 15(1): BR30-5, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19114962

RESUMO

BACKGROUND: To examine the prevalence of an exon 12 polymorphism on the human Thromboxane synthase (CYP5A1) gene. MATERIAL/METHODS: Using sequence-specific PCR, we examined the allelic prevalence in 237 Greek patients with ischemic strokes and in 171 controls. In addition, we compared the CYP5A1 allelic prevalence in 71 patients with stroke recurrence despite Aspirin use, in comparison with patients who have not experienced recurrent stroke while taking Aspirin. RESULTS: The frequencies of the CYP5A1*9 mutant (substitution of guanine by adenine near the heme-binding catalytic domain) and of the wild-type allele were 0.197 and 0.803, respectively; they did not differ significantly between stroke patients and controls. The wild-type allele was more frequent in the Cretan population compared to continental Greece (OR 1.80, 95% CI 1.19-2.74). The wild-type allele was more frequent among hypertensive and less frequent among diabetic stroke sufferers, respectively. The CYP5A1*9 mutant was significantly more prevalent among stroke patients with history of previous cerebrovascular attacks (p<0.01); and among those who failed secondary Aspirin prophylaxis even after adjusting for the common risk factors for cardiovascular disease (OR 1.49, 95% CI 1.06-2.11). CONCLUSIONS: Allelic prevalence of the CYP5A1 exon 12 might differ between geographic areas within the same ethnic group, and is associated with particular characteristics of stroke patients. Allele mutations can abolish the enzymatic activity of thromboxane synthase, via impaired heme binding, associated with defective response to Aspirin used as secondary prevention, an effect independent from the conventional risk factors for cerebrovascular disease.


Assuntos
Éxons/genética , Polimorfismo de Nucleotídeo Único , Acidente Vascular Cerebral/enzimologia , Tromboxano-A Sintase/genética , Primers do DNA/genética , Feminino , Frequência do Gene , Genótipo , Grécia , Heme/metabolismo , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Espectrofotometria Ultravioleta , Tromboxano-A Sintase/metabolismo
5.
Front Neural Circuits ; 12: 96, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429776

RESUMO

GABAergic (γ-aminobutyric acid) neurons are inhibitory neurons and protect neural tissue from excessive excitation. Cortical GABAergic neurons play a pivotal role for the generation of synchronized cortical network oscillations. Imbalance between excitatory and inhibitory mechanisms underlies many neuropsychiatric disorders and is correlated with abnormalities in oscillatory activity, especially in the gamma frequency range (30-80 Hz). We investigated the functional changes in cortical network activity in response to developmentally reduced inhibition in the adult mouse barrel cortex (BC). We used a mouse model that displays ∼50% fewer cortical interneurons due to the loss of Rac1 protein from Nkx2.1/Cre-expressing cells [Rac1 conditional knockout (cKO) mice], to examine how this developmental loss of cortical interneurons may affect basal synaptic transmission, synaptic plasticity, spontaneous activity, and neuronal oscillations in the adult BC. The decrease in the number of interneurons increased basal synaptic transmission, as examined by recording field excitatory postsynaptic potentials (fEPSPs) from layer II networks in the Rac1 cKO mouse cortex, decreased long-term potentiation (LTP) in response to tetanic stimulation but did not alter the pair-pulse ratio (PPR). Furthermore, under spontaneous recording conditions, Rac1 cKO brain slices exhibit enhanced sensitivity and susceptibility to emergent spontaneous activity. We also find that this developmental decrease in the number of cortical interneurons results in local neuronal networks with alterations in neuronal oscillations, exhibiting decreased power in low frequencies (delta, theta, alpha) and gamma frequency range (30-80 Hz) with an extra aberrant peak in high gamma frequency range (80-150 Hz). Therefore, our data show that disruption in GABAergic inhibition alters synaptic properties and plasticity, while it additionally disrupts the cortical neuronal synchronization in the adult BC.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Interneurônios/fisiologia , Animais , Contagem de Células/tendências , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Rede Nervosa/citologia , Rede Nervosa/fisiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-24550786

RESUMO

Neocortical network activity is generated through a dynamic balance between excitation, provided by pyramidal neurons, and inhibition, provided by interneurons. Imbalance of the excitation/inhibition ratio has been identified in several neuropsychiatric diseases, such as schizophrenia, autism and epilepsy, which also present with other cognitive deficits and symptoms associated with prefrontal cortical (PFC) dysfunction. We undertook a computational approach to study how changes in the excitation/inhibition balance in a PFC microcircuit model affect the properties of persistent activity, considered the cellular correlate of working memory function in PFC. To this end, we constructed a PFC microcircuit, consisting of pyramidal neuron models and all three different interneuron types: fast-spiking (FS), regular-spiking (RS), and irregular-spiking (IS) interneurons. Persistent activity was induced in the microcircuit model with a stimulus to the proximal apical dendrites of the pyramidal neuron models, and its properties were analyzed, such as the induction profile, the interspike intervals (ISIs) and neuronal synchronicity. Our simulations showed that (a) the induction but not the firing frequency or neuronal synchronicity is modulated by changes in the NMDA-to-AMPA ratio on FS interneuron model, (b) removing or decreasing the FS model input to the pyramidal neuron models greatly limited the biophysical modulation of persistent activity induction, decreased the ISIs and neuronal synchronicity during persistent activity, (c) the induction and firing properties could not be altered by the addition of other inhibitory inputs to the soma (from RS or IS models), and (d) the synchronicity change could be reversed by the addition of other inhibitory inputs to the soma, but beyond the levels of the control network. Thus, generic somatic inhibition acts as a pacemaker of persistent activity and FS specific inhibition modulates the output of the pacemaker.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Humanos , Interneurônios/fisiologia , Parvalbuminas/metabolismo , Células Piramidais/fisiologia , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA