Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 9(12): 1371-8, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18997794

RESUMO

Recent studies suggest that nuclear factor kappaB-inducing kinase (NIK) is suppressed through constitutive proteasome-mediated degradation regulated by TRAF2, TRAF3 and cIAP1 or cIAP2. Here we demonstrated that the degradation of NIK occurs upon assembly of a regulatory complex through TRAF3 recruitment of NIK and TRAF2 recruitment of cIAP1 and cIAP2. In contrast to TRAF2 and TRAF3, cIAP1 and cIAP2 seem to play redundant roles in the degradation of NIK, as inhibition of both cIAPs was required for noncanonical NF-kappaB activation and increased survival and proliferation of primary B lymphocytes. Furthermore, the lethality of TRAF3 deficiency in mice could be rescued by a single NIK gene, highlighting the importance of tightly regulated NIK.


Assuntos
Linfócitos B/imunologia , Diferenciação Celular/imunologia , Proteínas Inibidoras de Apoptose/imunologia , NF-kappa B/imunologia , Fator 2 Associado a Receptor de TNF/imunologia , Fator 3 Associado a Receptor de TNF/imunologia , Animais , Linfócitos B/citologia , Sobrevivência Celular , Células Cultivadas , Ativação Enzimática/imunologia , Immunoblotting , Imunoprecipitação , Proteínas Inibidoras de Apoptose/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Interferente Pequeno , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Transfecção
2.
J Biol Chem ; 293(30): 11913-11927, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29899110

RESUMO

Monocytes differentiate into macrophages, which deactivate invading pathogens. Macrophages can be resistant to cell death mechanisms in some situations, and the mechanisms involved are not clear. Here, using mouse immune cells, we investigated whether the differentiation of macrophages affects their susceptibility to cell death by the ripoptosome/necrosome pathways. We show that treatment of macrophages with a mimetic of second mitochondrial activator of caspases (SMAC) resulted in ripoptosome-driven cell death that specifically depended on tumor necrosis factor α (TNFα) expression and the receptor-interacting serine/threonine protein kinase 1 (RipK1)-RipK3-caspase-8 interaction in activated and cycling macrophages. Differentiation of macrophages increased the expression of pro-inflammatory cytokines but reduced RipK1-dependent cell death and the RipK3-caspase-8 interaction. The expression of the anti-apoptotic mediators, X-linked inhibitor of apoptosis protein (XIAP) and caspase-like apoptosis regulatory protein (cFLIPL), also increased in differentiated macrophages, which inhibited caspase activation. The resistance to cell death was abrogated in XIAP-deficient macrophages. However, even in the presence of increased XIAP expression, inhibition of the mitogen-activated protein kinase (MAPK) p38 and MAPK-activated protein kinase 2 (MK2) made differentiated macrophages susceptible to cell death. These results suggest that the p38/MK2 pathway overrides apoptosis inhibition by XIAP and that acquisition of resistance to cell death by increased expression of XIAP and cFLIPL may allow inflammatory macrophages to participate in pathogen control for a longer duration.


Assuntos
Inflamação/imunologia , Proteínas Inibidoras de Apoptose/imunologia , Macrófagos/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Animais , Apoptose , Diferenciação Celular , Células Cultivadas , Macrófagos/citologia , Camundongos Endogâmicos C57BL
3.
Immunity ; 30(6): 789-801, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19464198

RESUMO

Cellular inhibitor of apoptosis proteins (cIAPs) block apoptosis, but their physiological functions are still under investigation. Here, we report that cIAP1 and cIAP2 are E3 ubiquitin ligases that are required for receptor-interacting protein 2 (RIP2) ubiquitination and for nucleotide-binding and oligomerization (NOD) signaling. Macrophages derived from Birc2(-/-) or Birc3(-/-) mice, or colonocytes depleted of cIAP1 or cIAP2 by RNAi, were defective in NOD signaling and displayed sharp attenuation of cytokine and chemokine production. This blunted response was observed in vivo when Birc2(-/-) and Birc3(-/-) mice were challenged with NOD agonists. Defects in NOD2 signaling are associated with Crohn's disease, and muramyl dipeptide (MDP) activation of NOD2 signaling protects mice from experimental colitis. Here, we show that administration of MDP protected wild-type but not Ripk2(-/-) or Birc3(-/-) mice from colitis, confirming the role of the cIAPs in NOD2 signaling in vivo. This discovery provides therapeutic opportunities in the treatment of NOD-dependent immunologic and inflammatory diseases.


Assuntos
Imunidade Inata , Proteínas Inibidoras de Apoptose/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Animais , Apoptose/imunologia , Proteína 3 com Repetições IAP de Baculovírus , Colite/enzimologia , Colite/imunologia , Colite/patologia , Citocinas/imunologia , Citocinas/metabolismo , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD1/agonistas , Proteína Adaptadora de Sinalização NOD1/imunologia , Proteína Adaptadora de Sinalização NOD2/agonistas , Proteína Adaptadora de Sinalização NOD2/imunologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Receptores de Reconhecimento de Padrão/agonistas , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Ubiquitina-Proteína Ligases , Ubiquitinação/imunologia
4.
Hum Mol Genet ; 22(5): 867-78, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23184147

RESUMO

The cellular inhibitor of apoptosis 1 (cIAP1) protein is an essential regulator of canonical and noncanonical nuclear factor κB (NF-κB) signaling pathways. NF-κB signaling is known to play important roles in myogenesis and degenerative muscle disorders such as Duchenne muscular dystrophy (DMD), but the involvement of cIAP1 in muscle disease has not been studied directly. Here, we asked whether the loss of cIAP1 would influence the pathology of skeletal muscle in the mdx mouse model of DMD. Double-mutant cIAP1(-/-);mdx mice exhibited reduced muscle damage and decreased fiber centronucleation in the soleus, compared with single-mutant cIAP1(+/+);mdx mice. This improvement in pathology was associated with a reduction in muscle infiltration by macrophages and diminished expression of inflammatory cytokines such as IL-6 and tumor necrosis factor-α. Furthermore, the cIAP1(-/-);mdx mice exhibited reduced serum creatine kinase, and improved exercise endurance associated with improved exercise resilience by the diaphragm. Mechanistically, the loss of cIAP1 was sufficient to drive constitutive activation of the noncanonical NF-κB pathway, which led to increased myoblast fusion in vitro and in vivo. Collectively, these results show that the loss of cIAP1 protects skeletal muscle from the degenerative pathology resulting from systemic loss of dystrophin.


Assuntos
Proteínas Inibidoras de Apoptose/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , NF-kappa B/metabolismo , Animais , Creatina Quinase/sangue , Diafragma/metabolismo , Diafragma/fisiopatologia , Distrofina/genética , Distrofina/metabolismo , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Desenvolvimento Muscular/genética , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , NF-kappa B/genética , Resistência Física/genética , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/metabolismo
5.
Trends Immunol ; 33(11): 535-45, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22836014

RESUMO

The inhibitor of apoptosis (IAP) genes are critical regulators of multiple pathways that control cell death, proliferation, and differentiation. Several members of the IAP family regulate innate and adaptive immunity through modulation of signal transduction pathways, cytokine production, and cell survival. The regulation of immunity by the IAPs is primarily mediated through the ubiquitin ligase function of cellular IAP (cIAP)1, cIAP2, and X-linked IAP (XIAP), the targets of which impact nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signalling pathways. In addition, neuronal apoptosis inhibitory protein (NAIP), cIAP1, and cIAP2 modulate innate immune responses through control of the inflammasome complex. This review examines the role of mammalian IAPs in regulating immunity and describes the implications of a new class of pan-IAP antagonists for the treatment of immune disorders.


Assuntos
Apoptose , Proteínas Inibidoras de Apoptose/imunologia , Transdução de Sinais , Imunidade Adaptativa , Animais , Humanos , Imunidade Inata , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/genética , NF-kappa B/metabolismo
6.
Front Immunol ; 14: 1179827, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138866

RESUMO

Background: The genesis of SMAC mimetic drugs is founded on the observation that many cancers amplify IAP proteins to facilitate their survival, and therefore removal of these pathways would re-sensitize the cells towards apoptosis. It has become increasingly clear that SMAC mimetics also interface with the immune system in a modulatory manner. Suppression of IAP function by SMAC mimetics activates the non-canonical NF-κB pathway which can augment T cell function, opening the possibility of using SMAC mimetics to enhance immunotherapeutics. Methods: We have investigated the SMAC mimetic LCL161, which promotes degradation of cIAP-1 and cIAP-2, as an agent for delivering transient costimulation to engineered BMCA-specific human TAC T cells. In doing so we also sought to understand the cellular and molecular effects of LCL161 on T cell biology. Results: LCL161 activated the non-canonical NF-κB pathway and enhanced antigen-driven TAC T cell proliferation and survival. Transcriptional profiling from TAC T cells treated with LCL161 revealed differential expression of costimulatory and apoptosis-related proteins, namely CD30 and FAIM3. We hypothesized that regulation of these genes by LCL161 may influence the drug's effects on T cells. We reversed the differential expression through genetic engineering and observed impaired costimulation by LCL161, particularly when CD30 was deleted. While LCL161 can provide a costimulatory signal to TAC T cells following exposure to isolated antigen, we did not observe a similar pattern when TAC T cells were stimulated with myeloma cells expressing the target antigen. We questioned whether FasL expression by myeloma cells may antagonize the costimulatory effects of LCL161. Fas-KO TAC T cells displayed superior expansion following antigen stimulation in the presence of LCL161, suggesting a role for Fas-related T cell death in limiting the magnitude of the T cell response to antigen in the presence of LCL161. Conclusions: Our results demonstrate that LCL161 provides costimulation to TAC T cells exposed to antigen alone, however LCL161 did not enhance TAC T cell anti-tumor function when challenged with myeloma cells and may be limited due to sensitization of T cells towards Fas-mediated apoptosis.


Assuntos
Mieloma Múltiplo , NF-kappa B , Humanos , NF-kappa B/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo
8.
J Biol Chem ; 285(52): 40612-23, 2010 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20956527

RESUMO

Smac mimetic compounds (SMCs) potentiate TNFα-mediated cancer cell death by targeting the inhibitor of apoptosis (IAP) proteins. In addition to TNFα, the tumor microenvironment is exposed to a number of pro-inflammatory cytokines, including IL-1ß. Here, we investigated the potential impact of IL-1ß on SMC-mediated death of cancer cells. Synergy was seen in a subset of a diverse panel of 21 cancer cell lines to the combination of SMC and IL-1ß treatment, which required IL-1ß-induced activation of the NF-κB pathway. Elevated NF-κB activity resulted in the production of TNFα, which led to apoptosis dependent on caspase-8 and RIP1. In addition, concurrent silencing of cIAP1, cIAP2, and X-linked IAP by siRNA was most effective for triggering IL-1ß-mediated cell death. Importantly, SMC-resistant cells that produced TNFα in response to IL-1ß treatment were converted to an SMC-sensitive phenotype by c-FLIP knockdown. Reciprocally, ectopic expression of c-FLIP blocked cell death caused by combined SMC and IL-1ß treatment in sensitive cancer cells. Together, our study indicates that a positive feed-forward loop by pro-inflammatory cytokines can be exploited by SMCs to induce apoptosis in cancer cells.


Assuntos
Alcinos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Dipeptídeos/farmacologia , Interleucina-1beta/farmacologia , Neoplasias/tratamento farmacológico , Peptidomiméticos/farmacologia , Alcinos/agonistas , Animais , Antineoplásicos/agonistas , Proteína 3 com Repetições IAP de Baculovírus , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Linhagem Celular Tumoral , Dipeptídeos/agonistas , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Técnicas de Silenciamento de Genes , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Interleucina-1beta/agonistas , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Peptidomiméticos/agonistas , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases
9.
Int J Cancer ; 125(3): 688-97, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19358264

RESUMO

XAF1 (XIAP-associated factor 1) is a novel XIAP binding protein that can antagonize XIAP and sensitize cells to other cell death triggers. Our previous results have shown that aberrant hypermethylation of the CpG sites in XAF1 promoter is strongly associated with lower expression of XAF1 in gastric cancers. In our study, we investigated the effect of restoration of XAF1 expression on growth of gastric cancers. We found that the restoration of XAF1 expression suppressed anchorage-dependent and -independent growth and increased sensitivity to TRAIL and drug-induced apoptosis. Stable cell clones expressing XAF1 exhibited delayed tumor initiation in nude mice. Restoration of XAF1 expression mediated by adenovirus vector greatly increased apoptosis in gastric cancer cell lines in a time- and dose-dependent manner and sensitized cancer cells to TRAIL and drugs-induced apoptosis. Adeno-XAF1 transduction induced cell cycle G2/M arrest and upregulated the expression of p21 and downregulated the expression of cyclin B1 and cdc2. Notably, adeno-XAF1 treatment significantly inhibited tumor growth, strongly enhanced the antitumor activity of TRAIL in a gastric cancer xenograft model in vivo, and significantly prolonged the survival time of animals bearing tumor xenografts. Complete eradication of established tumors was achieved on combined treatment with adeno-XAF1 and TRAIL. Our results document that the restoration of XAF1 inhibits gastric tumorigenesis and tumor growth and that XAF1 is a promising candidate for cancer gene therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Terapia Genética/métodos , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/farmacologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/terapia , Proteínas Adaptadoras de Transdução de Sinal , Adenoviridae , Animais , Apoptose , Proteínas Reguladoras de Apoptose , Western Blotting , Ciclo Celular/genética , Linhagem Celular Tumoral , Ciclina B/metabolismo , Ciclina B1 , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Regulação para Baixo , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica , Vetores Genéticos , Humanos , Marcação In Situ das Extremidades Cortadas , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/uso terapêutico , Plasmídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/fisiopatologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fatores de Tempo , Transdução Genética , Transfecção , Transplante Heterólogo , Regulação para Cima
10.
Mol Cell Biol ; 26(2): 699-708, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16382159

RESUMO

The cellular inhibitor of apoptosis 2 (cIAP2/HIAP1) is a potent inhibitor of apoptotic death. In contrast to the other members of the IAP family, cIAP2 is transcriptionally inducible by nuclear factor-kappaB in response to multiple triggers. We demonstrate here that cIAP2-/- mice exhibit profound resistance to lipopolysaccharide (LPS)-induced sepsis, specifically because of an attenuated inflammatory response. We show that LPS potently upregulates cIAP2 in macrophages and that cIAP2-/- macrophages are highly susceptible to apoptosis in a LPS-induced proinflammatory environment. Hence, cIAP2 is critical in the maintenance of a normal innate immune inflammatory response.


Assuntos
Apoptose , Proteínas Inibidoras de Apoptose/imunologia , Macrófagos/imunologia , Sepse/imunologia , Animais , Proteína 3 com Repetições IAP de Baculovírus , Sobrevivência Celular , Células Cultivadas , Citocinas/biossíntese , Imunidade Inata , Proteínas Inibidoras de Apoptose/biossíntese , Proteínas Inibidoras de Apoptose/genética , Lipopolissacarídeos , Macrófagos/patologia , Camundongos , Camundongos Knockout , Sepse/induzido quimicamente , Sepse/patologia , Ubiquitina-Proteína Ligases , Regulação para Cima
11.
Mol Cell Oncol ; 6(4): 1607456, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31211235

RESUMO

A genome-wide small-interfering RNA-based screen identified the transcription factor Specificity Protein 3 (SP3) as a critical factor for Second mitochondrial-derived activator of caspase (Smac) mimetic-mediated killing of cancer cells. In concert with Nuclear Factor kappa B (NF-κB,) SP3 is required for the expression of the cytokine Tumor Necrosis Factor alpha (TNF-α) under basal and Smac mimetic-stimulated conditions.

12.
Skelet Muscle ; 9(1): 13, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31126323

RESUMO

BACKGROUND: Skeletal muscle atrophy is a pathological condition that contributes to morbidity in a variety of conditions including denervation, cachexia, and aging. Muscle atrophy is characterized as decreased muscle fiber cross-sectional area and protein content due, in part, to the proteolytic activities of two muscle-specific E3 ubiquitin ligases: muscle RING-finger 1 (MuRF1) and muscle atrophy F-box (MAFbx or Atrogin-1). The nuclear factor-kappa B (NF-κB) pathway has emerged as a critical signaling network in skeletal muscle atrophy and has become a prime therapeutic target for the treatment of muscle diseases. Unfortunately, none of the NF-κB targeting drugs are currently being used to treat these diseases, likely because of our limited knowledge and specificity, for muscle biology and disease. The cellular inhibitor of apoptosis 1 (cIAP1) protein is a positive regulator of tumor necrosis factor alpha (TNFα)-mediated classical NF-κB signaling, and cIAP1 loss has been shown to enhance muscle regeneration during acute and chronic injury. METHODS: Sciatic nerve transection in wild-type, cIAP1-null and Smac mimetic compound (SMC)-treated mice was performed to investigate the role of cIAP1 in denervation-induced atrophy. Genetic in vitro models of C2C12 myoblasts and primary myoblasts were also used to examine the role of classical NF-κB activity in cIAP1-induced myotube atrophy. RESULTS: We found that cIAP1 expression was upregulated in denervated muscles compared to non-denervated controls 14 days after denervation. Genetic and pharmacological loss of cIAP1 attenuated denervation-induced muscle atrophy and overexpression of cIAP1 in myotubes was sufficient to induce atrophy. The induction of myotube atrophy by cIAP1 was attenuated when the classical NF-κB signaling pathway was inhibited. CONCLUSIONS: These results demonstrate the cIAP1 is an important mediator of NF-κB/MuRF1 signaling in skeletal muscle atrophy and is a promising therapeutic target for muscle wasting diseases.


Assuntos
Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Denervação Muscular/efeitos adversos , Atrofia Muscular/etiologia , Animais , Proteínas Reguladoras de Apoptose/farmacologia , Linhagem Celular , Feminino , Marcação de Genes , Humanos , Proteínas Inibidoras de Apoptose/deficiência , Proteínas Inibidoras de Apoptose/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/farmacologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Mioblastos Esqueléticos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Tiazóis/farmacologia , Regulação para Cima
13.
Sci Signal ; 12(566)2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696705

RESUMO

The controlled production and downstream signaling of the inflammatory cytokine tumor necrosis factor-α (TNF-α) are important for immunity and its anticancer effects. Although chronic stimulation with TNF-α is detrimental to the health of the host in several autoimmune and inflammatory disorders, TNF-α-contrary to what its name implies-leads to cancer formation by promoting cell proliferation and survival. Smac mimetic compounds (SMCs), small-molecule antagonists of inhibitor of apoptosis proteins (IAPs), switch the TNF-α signal from promoting survival to promoting death in cancer cells. Using a genome-wide siRNA screen to identify factors required for SMC-to-TNF-α-mediated cancer cell death, we identified the transcription factor SP3 as a critical molecule in both basal and SMC-induced production of TNF-α by engaging the nuclear factor κB (NF-κB) transcriptional pathway. Moreover, the promotion of TNF-α expression by SP3 activity confers differential sensitivity of cancer versus normal cells to SMC treatment. The key role of SP3 in TNF-α production and signaling will help us further understand TNF-α biology and provide insight into mechanisms relevant to cancer and inflammatory disease.


Assuntos
Materiais Biomiméticos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição Sp3/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos , Proteínas Mitocondriais/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias/genética , Neoplasias/patologia , Interferência de RNA , Transdução de Sinais/genética , Fator de Transcrição Sp3/genética , Fator de Necrose Tumoral alfa/genética
14.
J Neuroimmunol ; 203(1): 79-93, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18687476

RESUMO

Dysregulated apoptotic signaling has been implicated in most forms of cancer and many autoimmune diseases, such as multiple sclerosis (MS). We have previously shown that the anti-apoptotic protein X-linked inhibitor of apoptosis (XIAP) is elevated in T cells from mice with experimental autoimmune encephalomyelitis (EAE). In MS and EAE, the failure of autoimmune cells to undergo apoptosis is thought to exacerbate clinical symptoms and contribute to disease progression and CNS tissue damage. Antisense-mediated knockdown of XIAP, in vivo, increases the susceptibility of effector T cells to apoptosis, thus attenuating CNS inflammation and thereby alleviating the clinical signs of EAE. We report for the first time, generation of transgenic mice whereby the ubiquitin promoter drives expression of XIAP (ubXIAP), resulting in increased XIAP expression in a variety of tissues, including cells comprising the immune system. Transgenic ubXIAP mice and wild-type (WT) littermates were immunized with myelin oligodendrocyte glycoprotein (MOG35-55) in complete Freund's adjuvant and monitored daily for clinical symptoms of EAE over a 21-day period. The severity of EAE was increased in ubXIAP mice relative to WT-littermates, suggesting that XIAP overexpression enhanced the resistance of T cells to apoptosis. Consistent with this finding, T cells derived from MOG35-55-immunized ubXIAP mice and cultured in the presence of antigen were more resistant to etoposide-mediated apoptosis compared to WT-littermates. This work identifies XIAP is an important apoptotic regulator in EAE and a potential pharmacological target for treating autoimmune diseases such as MS.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/fisiopatologia , Índice de Gravidade de Doença , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Animais , Apoptose/imunologia , Comportamento Animal , Modelos Animais de Doenças , Feminino , Expressão Gênica/imunologia , Genes myc/genética , Proteína Glial Fibrilar Ácida/imunologia , Imunização , Imuno-Histoquímica , Proteínas Inibidoras de Apoptose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esclerose Múltipla/imunologia , Esclerose Múltipla/fisiopatologia , Proteínas da Mielina , Glicoproteína Associada a Mielina/imunologia , Glicoproteína Mielina-Oligodendrócito , Gravidez , Medula Espinal/imunologia , Medula Espinal/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Ubiquitina C/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
15.
Cell Death Dis ; 9(6): 592, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789521

RESUMO

Understanding the molecular signaling in programmed cell death is vital to a practical understanding of inflammation and immune cell function. Here we identify a previously unrecognized mechanism that functions to downregulate the necrosome, a central signaling complex involved in inflammation and necroptosis. We show that RipK1 associates with RipK3 in an early necrosome, independent of RipK3 phosphorylation and MLKL-induced necroptotic death. We find that formation of the early necrosome activates K48-ubiquitin-dependent proteasomal degradation of RipK1, Caspase-8, and other necrosomal proteins. Our results reveal that the E3-ubiquitin ligase Triad3a promotes this negative feedback loop independently of typical RipK1 ubiquitin editing enzymes, cIAPs, A20, or CYLD. Finally, we show that Triad3a-dependent necrosomal degradation limits necroptosis and production of inflammatory cytokines. These results reveal a new mechanism of shutting off necrosome signaling and may pave the way to new strategies for therapeutic manipulation of inflammatory responses.


Assuntos
Apoptose , Citocinas/biossíntese , Proteólise , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas Inibidoras de Apoptose/metabolismo , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Necrose , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Ubiquitinação
16.
Mol Ther Oncolytics ; 10: 28-39, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30101187

RESUMO

Smac mimetic compounds (SMCs) are anti-cancer drugs that antagonize Inhibitor of Apoptosis proteins, which consequently sensitize cancer cells to death in the presence of proinflammatory ligands such as tumor necrosis factor alpha (TNF-α). SMCs synergize with the attenuated oncolytic vesicular stomatitis virus (VSVΔ51) by eliciting an innate immune response, which is dependent on the endogenous production of TNF-α and type I interferon. To improve on this SMC-mediated synergistic response, we generated TNF-α-armed VSVΔ51 to produce elevated levels of this death ligand. Due to ectopic expression of TNF-α from infected cells, a lower viral dose of TNF-α-armed VSVΔ51 combined with treatment of the SMC LCL161 was sufficient to improve the survival rate compared to LCL161 and unarmed VSVΔ51 co-therapy. This improved response is attributed to a bystander effect whereby the spread of TNF-α from infected cells leads to the death of uninfected cells in the presence of LCL161. In addition, the treatments induced vascular collapse in solid tumors with a concomitant increase of tumor cell death, revealing another mechanism by which cytokine-armed VSVΔ51 in combination with LCL161 can kill tumor cells. Our studies demonstrate the potential for cytokine-engineered oncolytic virus and SMCs as a new combination immunotherapy for cancer treatment.

18.
Curr Opin Investig Drugs ; 8(6): 469-76, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17621877

RESUMO

The inhibitors of apoptosis (IAP) proteins have emerged as important cancer targets. The cellular control of IAP expression is regulated by survival signaling pathways and by a variety of known intrinsic antagonists. Among these antagonists, the X-linked IAP-associated factor (XAF)1 is unique in its control of IAP function and in its ability to sensitize cancer cells to apoptosis. Studies have demonstrated that XAF1 is strongly pro-apoptotic, is inducible by IFN and is a tumor suppressor. Thus, this antagonist may have significant value in the treatment of cancer.


Assuntos
Proteínas de Neoplasias/genética , Neoplasias/genética , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Proteínas de Neoplasias/efeitos dos fármacos
19.
BMC Cancer ; 7: 52, 2007 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-17376236

RESUMO

BACKGROUND: XIAP-associated factor 1 (XAF1) is a putative tumor suppressor that exerts its proapoptotic effects through both caspase-dependent and -independent means. Loss of XAF1 expression through promoter methylation has been implicated in the process of tumorigenesis in a variety of cancers. In this report, we investigated the role of basal xaf1 promoter methylation in xaf1 expression and assessed the responsiveness of cancer cell lines to XAF1 induction by IFN-beta. METHODS: We used the conventional bisulfite DNA modification and sequencing method to determine the methylation status in the CpG sites of xaf1 promoter in glioblastoma (SF539, SF295), neuroblastoma (SK-N-AS) and cervical carcinoma (HeLa) cells. We analysed the status and incidence of basal xaf1 promoter methylation in xaf1 expression in non-treated cells as well as under a short or long exposure to IFN-beta. Stable XAF1 glioblastoma knock-down cell lines were established to characterize the direct implication of XAF1 in IFN-beta-mediated sensitization to TRAIL-induced cell death. RESULTS: We found a strong variability in xaf1 promoter methylation profile and responsiveness to IFN-beta across the four cancer cell lines studied. At the basal level, aberrant promoter methylation was linked to xaf1 gene silencing. After a short exposure, the IFN-beta-mediated reactivation of xaf1 gene expression was related to the degree of basal promoter methylation. However, in spite of continued promoter hypermethylation, we find that IFN-beta induced a transient xaf1 expression, that in turn, was followed by promoter demethylation upon a prolonged exposure. Importantly, we demonstrated for the first time that IFN-beta-mediated reactivation of endogenous XAF1 plays a critical role in TRAIL-induced cell death since XAF1 knock-down cell lines completely lost their IFN-beta-mediated TRAIL sensitivity. CONCLUSION: Together, these results suggest that promoter demethylation is not the sole factor determining xaf1 gene induction under IFN-beta treatment. Furthermore, our study provides evidence that XAF1 is a crucial interferon-stimulated gene (ISG) mediator of IFN-induced sensitization to TRAIL in cancer.


Assuntos
Inativação Gênica , Interferon beta/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Apoptose , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Metilação de DNA , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Regiões Promotoras Genéticas , Ativação Transcricional
20.
Mol Cell Biol ; 23(1): 280-8, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12482981

RESUMO

The X-chromosome-linked inhibitor of apoptosis, XIAP, is the most powerful and ubiquitous intrinsic inhibitor of apoptosis. We have shown previously that the translation of XIAP is controlled by a potent internal ribosome entry site (IRES) element. IRES-mediated translation of XIAP is increased in response to cellular stress, suggesting the critical role for IRES translation during cellular stress. Here, we demonstrate that heterogeneous nuclear ribonucleoproteins C1 and C2 (hnRNPC1 and -C2) are part of the RNP complex that forms on XIAP IRES. Furthermore, the cellular levels of hnRNPC1 and -C2 parallel the activity of XIAP IRES and the overexpression of hnRNPC1 and -C2 specifically enhanced translation of XIAP IRES, suggesting that hnRNPC1 and -C2 may modulate XIAP expression. Given the central role of XIAP in the regulation of apoptosis these results are important for our understanding of the control of apoptosis.


Assuntos
Apoptose/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Proteínas/genética , Sequências Reguladoras de Ácido Ribonucleico , Ribossomos/genética , Regiões 5' não Traduzidas , Sequência de Bases , Células Cultivadas , Feminino , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Humanos , Dados de Sequência Molecular , Biossíntese de Proteínas , Isoformas de Proteínas , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA