Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769326

RESUMO

Cytocompatibility analyses of new implant materials or biomaterials are not only prescribed by the Medical Device Regulation (MDR), as defined in the DIN ISO Norm 10993-5 and -12, but are also increasingly replacing animal testing. In this context, jellyfish collagen has already been established as an alternative to mammalian collagen in different cell culture conditions, but a lack of knowledge exists about its applicability for cytocompatibility analyses of biomaterials. Thus, the present study was conducted to compare well plates coated with collagen type 0 derived from Rhizostoma pulmo with plates coated with bovine and porcine collagen. The coated well plates were analysed in vitro for their cytocompatibility, according to EN ISO 10993-5/-12, using both L929 fibroblasts and MC3T3 pre-osteoblasts. Thereby, the coated well plates were compared, using established materials as positive controls and a cytotoxic material, RM-A, as a negative control. L929 cells exhibited a significantly higher viability (#### p < 0.0001), proliferation (## p < 0.01), and a lower cytotoxicity (## p < 0.01 and # p < 0.05)) in the Jellagen® group compared to the bovine and porcine collagen groups. MC3T3 cells showed similar viability and acceptable proliferation and cytotoxicity in all collagen groups. The results of the present study revealed that the coating of well plates with collagen Type 0 derived from R. pulmo leads to comparable results to the case of well plates coated with mammalian collagens. Therefore, it is fully suitable for the in vitro analyses of the cytocompatibility of biomaterials or medical devices.


Assuntos
Cnidários , Cifozoários , Animais , Bovinos , Materiais Biocompatíveis/farmacologia , Colágeno , Linhagem Celular , Mamíferos
2.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32353983

RESUMO

INTRODUCTION: Bioresorbable collagenous barrier membranes are used to prevent premature soft tissue ingrowth and to allow bone regeneration. For volume stable indications, only non-absorbable synthetic materials are available. This study investigates a new bioresorbable hydrofluoric acid (HF)-treated magnesium (Mg) mesh in a native collagen membrane for volume stable situations. MATERIALS AND METHODS: HF-treated and untreated Mg were compared in direct and indirect cytocompatibility assays. In vivo, 18 New Zealand White Rabbits received each four 8 mm calvarial defects and were divided into four groups: (a) HF-treated Mg mesh/collagen membrane, (b) untreated Mg mesh/collagen membrane (c) collagen membrane and (d) sham operation. After 6, 12 and 18 weeks, Mg degradation and bone regeneration was measured using radiological and histological methods. RESULTS: In vitro, HF-treated Mg showed higher cytocompatibility. Histopathologically, HF-Mg prevented gas cavities and was degraded by mononuclear cells via phagocytosis up to 12 weeks. Untreated Mg showed partially significant more gas cavities and a fibrous tissue reaction. Bone regeneration was not significantly different between all groups. DISCUSSION AND CONCLUSIONS: HF-Mg meshes embedded in native collagen membranes represent a volume stable and biocompatible alternative to the non-absorbable synthetic materials. HF-Mg shows less corrosion and is degraded by phagocytosis. However, the application of membranes did not result in higher bone regeneration.


Assuntos
Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Magnésio/química , Crânio/lesões , Células 3T3 , Implantes Absorvíveis , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Modelos Animais de Doenças , Feminino , Regeneração Tecidual Guiada , Ácido Fluorídrico/química , Membranas Artificiais , Camundongos , Fagocitose , Coelhos , Crânio/efeitos dos fármacos , Resultado do Tratamento
3.
J Environ Manage ; 274: 111178, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32771774

RESUMO

Papermaking waste liquid (black liquor) is a serious source of water pollution worldwide. The subsequent treatment of it is very difficult cause it contains a large amount of lignin, inorganic salts, organic matter, and pigments, which lead to serious water pollution. Lignin is the main by-product of the paper industry and is the only natural aromatic recyclable resource. Its effective utilization rate is currently less than 3%. Therefore, how to effectively recycle lignin in papermaking waste liquid and further synthesize industrialized products is of great significance to the sustainable development and environmental protection. Besides, based on the shortage of petroleum resources in recent years, the application of biomass resources instead of petroleum resources in the industry is also an important issue. In this article, we explored the best optimal conditions for the oxypropylation and esterification of lignin, and prepared bio-bitumen based on modified lignin, and then applied it to the waterproof coating sheets. FTIR and mechanical properties (softening point, low-temperature flexibility, peel strength, etc.) were tested on the obtained waterproof coating sheets. The results show that the addition of modified lignin reduced the softening point and peel strength of the coating sheets. Interestingly, both oxypropylated lignin (OL) and esterified lignin (OEL) were very beneficial to resist the decrease in peel strength during the aging process, showing a significant improvement in the performance of the coating sheets after aging compared to the control.


Assuntos
Hidrocarbonetos , Lignina , Biomassa
4.
J Environ Manage ; 261: 110225, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148295

RESUMO

Concrete is significant for construction. A problem in application is the appearance of cracks that will damage its strength. An autogenous crack-healing mechanism based on bacteria receives increasing attention in recent years. The bacteria are able to form calcium carbonate (CaCO3) precipitations in suitable conditions to protect and reinforce the concrete. However, a large number of spores are crushed in aged specimens, resulting in a loss of viability. A new kind of hydrogel crosslinked by alginate, chitosan and calcium ions was introduced in this study. It was observed that the addition of chitosan improved the swelling properties of calcium alginate. Opposite pH response to calcium alginate was observed when the chitosan content in the solution reached 1.0%. With an addition of 1.0% chitosan in hydrogel beads, 10.28% increase of compressive strength and 13.79% increase of flexural strength to the control were observed. The results reveal self-healing properties of concretes. A healing crack of 4 cm length and 1 mm width was observed when using cement PO325, with the addition of bacterial spores (2.54-3.07 × 105/cm3 concrete) encapsulated by hydrogel containing no chitosan.


Assuntos
Quitosana , Hidrogéis , Bactérias , Carbonato de Cálcio , Materiais de Construção , Concentração de Íons de Hidrogênio
5.
Langmuir ; 34(40): 11933-11942, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30125507

RESUMO

Polyelectrolyte multilayer (PEM) are thin polymeric films produced by alternating adsorption of positively and negatively charged polyelectrolytes (PE) on a substrate. These films are considered drug delivery agents as well as coating material for implants, due to their antibiofouling and biologically benign properties. For these reasons the film mechanical properties as well as response to mechanical stress are important measurement parameters. Especially intriguing is the correlation of the mechanical properties of PEM on macroscopic level with the structure of PEM on molecular level, which is addressed here for the first time. This study investigates PEM from PDADMA/PSS produced by spraying technique with neutron and X-ray reflectometry. Reflectometry technique provides precise information on thickness and density (i.e., electron density or scattering length density, respectively), and, this way, allows to conclude on changes in film composition. Thus, neutron and X-ray reflectometry technique is suitable to investigate the overall and the internal transformations, which PEM films might undergo upon exposure to mechanical load. During uniaxial elongation two regimes of PEM-deformation can be observed: An elastic regime at small elongations (below ca. 0.2%), which is characterized by a reversible change of film thickness, and a plastic regime with a permanent change above this limit. Both regimes have in common, that the mechanical load induces an increase of the film thickness, which is accompanied by an uptake of water from the surrounding atmosphere. The strain causes a molecular rearrangement within the PEM-structure of stratified layers, which, even in elastic regime, is permanent, although the thickness change remains reversible.

6.
Soft Matter ; 10(30): 5579-88, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24959988

RESUMO

The surface properties of human meibomian lipids (MGS), the major constituent of the tear film (TF) lipid layer, are of key importance for TF stability. The dynamic interfacial properties of films by MGS from normal eyes (nMGS) and eyes with meibomian gland dysfunction (dMGS) were studied using a Langmuir surface balance. The behavior of the samples during dynamic area changes was evaluated by surface pressure-area isotherms and isocycles. The surface dilatational rheology of the films was examined in the frequency range 10(-5) to 1 Hz by the stress-relaxation method. A significant difference was found, with dMGS showing slow viscosity-dominated relaxation at 10(-4) to 10(-3) Hz, whereas nMGS remained predominantly elastic over the whole range. A Cole-Cole plot revealed two characteristic processes contributing to the relaxation, fast (on the scale of characteristic time τ < 5 s) and slow (τ > 100 s), the latter prevailing in dMGS films. Brewster angle microscopy revealed better spreading of nMGS at the air-water interface, whereas dMGS layers were non-uniform and patchy. The distinctions in the interfacial properties of the films in vitro correlated with the accelerated degradation of meibum layer pattern at the air-tear interface and with the decreased stability of TF in vivo. These results, and also recent findings on the modest capability of meibum to suppress the evaporation of the aqueous subphase, suggest the need for a re-evaluation of the role of MGS. The probable key function of meibomian lipids might be to form viscoelastic films capable of opposing dilation of the air-tear interface. The impact of temperature on the meibum surface properties is discussed in terms of its possible effect on the normal structure of the film.


Assuntos
Lipídeos/química , Glândulas Tarsais , Adulto , Idoso , Idoso de 80 Anos ou mais , Elasticidade , Humanos , Pessoa de Meia-Idade , Reologia , Propriedades de Superfície , Temperatura , Viscosidade , Adulto Jovem
7.
Heliyon ; 10(13): e34025, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071686

RESUMO

Magnesium and its alloys are suitable materials for biodegradable biomedical implants such as cardiovascular stents. Here we introduce an innovative composite polyelectrolyte multilayer/wax coating applied to commercial coronary Mg-based stents serving as a barrier layer effectively retarding corrosion. This hydrophobic coating, build by layer-by-layer technology, appeared very thin, smooth, homogeneous, strongly adherent and completely covering the surface of the Mg-stent. In-vitro degradation tests showed greater resistance to degradation of coated Mg-stents compared to uncoated and passivated ones. Cytocompatibility studies proved that Mg-stent coated with the composite coating was non-cytotoxic and improved fibroblast cell viability compared to the uncoated Mg-stent.

8.
Phys Chem Chem Phys ; 15(2): 483-8, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23172557

RESUMO

Polyelectrolyte multilayers (PEMs) deposited on flexible supports are promising candidates for many applications ranging from controlled wettability over stimuli responsive nanovalves to lithography free surface structuring. Since many potential applications involve elongation of these films, we investigated the effect of elongation on the PEM thickness and density with ellipsometry. To our surprise PEM films with known amorphous internal structure show auxetic behavior that depends on the PEM preparation condition. The measured refractive index was compared with simulated values using the Garnet equation to evaluate if the incorporation of water or air causes the observed phenomena.


Assuntos
Eletrólitos/química , Polímeros/química , Cloretos/química , Modelos Moleculares , Polietilenoimina/química , Poliestirenos/química , Refratometria , Água/química , Molhabilidade
9.
Data Brief ; 49: 109461, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37577731

RESUMO

This data article describes the stress-strain curves, energy absorption and energy absorption efficiency of open-cell AlSi10Mg materials and open-cell AlSi10Mg-SiC composites with different pore sizes and strain rates. The data were obtained by quasi-static compression loading up to 60% strain at strain rates of 0.01 and 0.001 s-1 according to ISO 13,314:2011 standard. The data can be used to compare the effects of pore size and strain rate on the compressive properties of the materials. The data are related to the research article entitled "Fabrication, Experimental Investigation and Prediction of Wear Behavior of Open-Cell AlSi10Mg-SiC Composite Materials" (Kolev, M., Drenchev, L., & Petkov, V. (2023). Fabrication, Experimental Investigation and Prediction of Wear Behavior of Open-Cell AlSi10Mg-SiC Composite Materials. Metals, 13(4), 814. MDPI AG. Retrieved from http://dx.doi.org/10.3390/met13040814).

10.
In Vivo ; 37(1): 320-328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593025

RESUMO

BACKGROUND/AIM: The aim of this study was the conception, production, material analysis and cytocompatibility analysis of a new collagen foam for medical applications. MATERIALS AND METHODS: After the innovative production of various collagen sponges from bovine sources, the foams were analyzed ex vivo in terms of their structure (including pore size) and in vitro in terms of cytocompatibility according to EN ISO 10993-5/-12. In vitro, the collagen foams were compared with the established biomaterials cerabone and Jason membrane. Materials cerabone and Jason membrane. RESULTS: Collagen foams with different compositions were successfully produced from bovine sources. Ex vivo, the foams showed a stable and long-lasting primary structure quality with a bubble area of 1,000 to 2,000 µm2 In vitro, all foams showed sufficient cytocompatibility. CONCLUSION: Collagen sponges represent a promising material for hard and soft tissue regeneration. Future studies could focus on integrating and investigating different additives in the foams.


Assuntos
Materiais Biocompatíveis , Colágeno , Animais , Bovinos , Hidroxiapatitas
11.
Materials (Basel) ; 14(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34832408

RESUMO

Polymeric micelle-like nanoparticles have demonstrated effectiveness for the delivery of some poorly soluble or hydrophobic anticancer drugs. In this study, a hydrophobic moiety, deoxycholic acid (DCA) was first bonded on a polysaccharide, chitosan (CS), for the preparation of amphiphilic chitosan (CS-DCA), which was further modified with a cationic glycidyltrimethylammounium chloride (GTMAC) to form a novel soluble chitosan derivative (HT-CS-DCA). The cationic amphiphilic HT-CS-DCA was easily self-assembled to micelle-like nanoparticles about 200 nm with narrow size distribution (PDI 0.08-0.18). The zeta potential of nanoparticles was in the range of 14 to 24 mV, indicating higher positive charges. Then, doxorubicin (DOX), an anticancer drug with poor solubility, was entrapped into HT-CS-DCA nanoparticles. The DOX release test was performed in PBS (pH 7.4) at 37 °C, and the results showed that there was no significant burst release in the first two hours, and the cumulative release increased steadily and slowly in the following hours. HT-CS-DCA nanoparticles loaded with DOX could easily enter into MCF-7 cells, as observed by a confocal microscope. As a result, DOX-loaded HT-CS-DCA nanoparticles demonstrated a significant inhibition activity on MCF-7 growth without obvious cellular toxicity in comparison with blank nanoparticles. Therefore, the anticancer efficacy of these cationic HT-CS-DCA nanoparticles showed great promise for the delivery of DOX in cancer therapy.

12.
ACS Appl Bio Mater ; 4(2): 1441-1449, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014494

RESUMO

Adhesion of host cells on the surface of implants is necessary for a healthy ingrowth of the implanted material. One possibility of surface modification is the coating of the implant with a second material with advantageous physical-chemical surface properties for the biological system. The coverage with blood proteins takes place immediately after implantation. It is followed by host-cell interaction on the surface. In this work, the effect of polyelectrolyte multilayer coatings (PEMs) on adhesion and activity of human umbilical vein endothelial cells (HUVECs) was studied. The PEMs were formed from poly(styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) from solutions with different concentrations of NaCl varying between 0 and 1.0 M. The adhesion of HUVEC and their viability on the PEM is related to the amount of adsorbed proteins from the applied cell growth medium. The amount of adsorbed proteins is controlled not only by the surface charge but also by the internal excess charge of the PEM. The internal excess charge of the PEM was controlled by changing the electrolyte concentration in the deposition solutions.


Assuntos
Adesão Celular/fisiologia , Polieletrólitos/química , Materiais Biocompatíveis , Sobrevivência Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Teste de Materiais , Propriedades de Superfície
13.
ACS Biomater Sci Eng ; 7(8): 3933-3946, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34296596

RESUMO

High moisture permeability, excellent mechanical properties in a wet state, high water-holding capability, and high exudate absorption make bacterial nanocellulose (BNC) a favorable candidate for biomedical device production, especially wound dressings. The lack of antibacterial activity and healing-promoting ability are the main drawbacks that limit its wide application. Pullulan (Pul) is a nontoxic polymer that can promote wound healing. Zinc oxide nanoparticles (ZnO-NPs) are well-known as a safe antibacterial agent. In this study, aminoalkylsilane was chemically grafted on a BNC membrane (A-g-BNC) and used as a bridge to combine BNC with Pul-ZnO-NPs hybrid electrospun nanofibers. FTIR results confirmed the successful production of A-g-BNC/Pul-ZnO. The obtained dressing demonstrated blood clotting performance better than that of BNC. The dressing showed an ability to release ZnO, and its antibacterial activity was up to 5 log values higher than that of BNC. The cytotoxicity of the dressing toward L929 fibroblast cells clearly showed safety due to the proliferation of fibroblast cells. The animal test in a rat model indicated faster healing and re-epithelialization, small blood vessel formation, and collagen synthesis in the wounds covered by A-g-BNC/Pul-ZnO. The new functional dressing, fabricated with a cost-effective and easy method, not only showed excellent antibacterial activity but could also accelerate wound healing.


Assuntos
Nanofibras , Nanopartículas , Óxido de Zinco , Animais , Bandagens , Glucanos , Ratos
14.
In Vivo ; 35(5): 2541-2549, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34410941

RESUMO

BACKGROUND/AIM: The aim of this study was the conception, production, material analysis and cytocompatibility analysis of a new collagen foam for medical applications. MATERIALS AND METHODS: After the innovative production of various collagen sponges from bovine sources, the foams were analyzed ex vivo in terms of their structure (including pore size) and in vitro in terms of cytocompatibility according to EN ISO 10993-5/-12. In vitro, the collagen foams were compared with the established soft and hard tissue materials cerabone and Jason membrane (both botiss biomaterials GmbH, Zossen, Germany). RESULTS: Collagen foams with different compositions were successfully produced from bovine sources. Ex vivo, the foams showed a stable and long-lasting primary structure quality with a bubble area of 1,000 to 2,000 µm2 In vitro, all foams showed sufficient cytocompatibility. CONCLUSION: Collagen sponges represent a promising material for hard and soft tissue regeneration. Future studies could focus on integrating and investigating different additives in the foams.


Assuntos
Materiais Biocompatíveis , Colágeno , Animais , Bovinos , Alemanha , Cicatrização
15.
Materials (Basel) ; 14(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34885527

RESUMO

The physicochemical properties of synthetically produced bone substitute materials (BSM) have a major impact on biocompatibility. This affects bony tissue integration, osteoconduction, as well as the degradation pattern and the correlated inflammatory tissue responses including macrophages and multinucleated giant cells (MNGCs). Thus, influencing factors such as size, special surface morphologies, porosity, and interconnectivity have been the subject of extensive research. In the present publication, the influence of the granule size of three identically manufactured bone substitute granules based on the technology of hydroxyapatite (HA)-forming calcium phosphate cements were investigated, which includes the inflammatory response in the surrounding tissue and especially the induction of MNGCs (as a parameter of the material degradation). For the in vivo study, granules of three different size ranges (small = 0.355-0.5 mm; medium = 0.5-1 mm; big = 1-2 mm) were implanted in the subcutaneous connective tissue of 45 male BALB/c mice. At 10, 30, and 60 days post implantationem, the materials were explanted and histologically processed. The defect areas were initially examined histopathologically. Furthermore, pro- and anti-inflammatory macrophages were quantified histomorphometrically after their immunohistochemical detection. The number of MNGCs was quantified as well using a histomorphometrical approach. The results showed a granule size-dependent integration behavior. The surrounding granulation tissue has passivated in the groups of the two bigger granules at 60 days post implantationem including a fibrotic encapsulation, while a granulation tissue was still present in the group of the small granules indicating an ongoing cell-based degradation process. The histomorphometrical analysis showed that the number of proinflammatory macrophages was significantly increased in the small granules at 60 days post implantationem. Similarly, a significant increase of MNGCs was detected in this group at 30 and 60 days post implantationem. Based on these data, it can be concluded that the integration and/or degradation behavior of synthetic bone substitutes can be influenced by granule size.

16.
Membranes (Basel) ; 11(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803205

RESUMO

Collagen-based barrier membranes are an essential component in Guided Bone Regeneration (GBR) procedures. They act as cell-occlusive devices that should maintain a micromilieu where bone tissue can grow, which in turn provides a stable bed for prosthetic implantation. However, the standing time of collagen membranes has been a challenging area, as native membranes are often prematurely resorbed. Therefore, consolidation techniques, such as chemical cross-linking, have been used to enhance the structural integrity of the membranes, and by consequence, their standing time. However, these techniques have cytotoxic tendencies and can cause exaggerated inflammation and in turn, premature resorption, and material failures. However, tissues from different extraction sites and animals are variably cross-linked. For the present in vivo study, a new collagen membrane based on bovine dermis was extracted and compared to a commercially available porcine-sourced collagen membrane extracted from the pericardium. The membranes were implanted in Wistar rats for up to 60 days. The analyses included well-established histopathological and histomorphometrical methods, including histochemical and immunohistochemical staining procedures, to detect M1- and M2-macrophages as well as blood vessels. Initially, the results showed that both membranes remained intact up to day 30, while the bovine membrane was fragmented at day 60 with granulation tissue infiltrating the implantation beds. In contrast, the porcine membrane remained stable without signs of material-dependent inflammatory processes. Therefore, the bovine membrane showed a special integration pattern as the fragments were found to be overlapping, providing secondary porosity in combination with a transmembraneous vascularization. Altogether, the bovine membrane showed comparable results to the porcine control group in terms of biocompatibility and standing time. Moreover, blood vessels were found within the bovine membranes, which can potentially serve as an additional functionality of barrier membranes that conventional barrier membranes do not provide.

17.
ACS Appl Mater Interfaces ; 13(31): 37563-37577, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34338525

RESUMO

Despite its success against cancer, photothermal therapy (PTT) (>50 °C) suffers from several limitations such as triggering inflammation and facilitating immune escape and metastasis and also damage to the surrounding normal cells. Mild-temperature PTT has been proposed to override these shortcomings. We developed a nanosystem using HepG2 cancer cell membrane-cloaked zinc glutamate-modified Prussian blue nanoparticles with triphenylphosphine-conjugated lonidamine (HmPGTL NPs). This innovative approach achieved an efficient mild-temperature PTT effect by downregulating the production of intracellular ATP. This disrupts a section of heat shock proteins that cushion cancer cells against heat. The physicochemical properties, anti-tumor efficacy, and mechanisms of HmPGTL NPs both in vitro and in vivo were investigated. Moreover, the nanoparticles cloaked with the HepG2 cell membrane substantially prolonged the circulation time in vivo. Overall, the designed nanocomposites enhance the efficacy of mild-temperature PTT by disrupting the production of ATP in cancer cells. Thus, we anticipate that the mild-temperature PTT nanosystem will certainly present its enormous potential in various biomedical applications.


Assuntos
Antineoplásicos/uso terapêutico , Membrana Celular/química , Ferrocianetos/química , Mitocôndrias/efeitos dos fármacos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/efeitos da radiação , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Feminino , Ferrocianetos/efeitos da radiação , Ferrocianetos/toxicidade , Células Hep G2 , Humanos , Indazóis/química , Indazóis/uso terapêutico , Raios Infravermelhos , Camundongos Nus , Nanocompostos/química , Nanocompostos/toxicidade , Nanopartículas/efeitos da radiação , Nanopartículas/toxicidade , Terapia Fototérmica
18.
ACS Appl Mater Interfaces ; 13(46): 55534-55549, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34762399

RESUMO

A full understanding of the relationship between surface properties, protein adsorption, and immune responses is lacking but is of great interest for the design of biomaterials with desired biological profiles. In this study, polyelectrolyte multilayer (PEM) coatings with gradient changes in surface wettability were developed to shed light on how this impacts protein adsorption and immune response in the context of material biocompatibility. The analysis of immune responses by peripheral blood mononuclear cells to PEM coatings revealed an increased expression of proinflammatory cytokines tumor necrosis factor (TNF)-α, macrophage inflammatory protein (MIP)-1ß, monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-6 and the surface marker CD86 in response to the most hydrophobic coating, whereas the most hydrophilic coating resulted in a comparatively mild immune response. These findings were subsequently confirmed in a cohort of 24 donors. Cytokines were produced predominantly by monocytes with a peak after 24 h. Experiments conducted in the absence of serum indicated a contributing role of the adsorbed protein layer in the observed immune response. Mass spectrometry analysis revealed distinct protein adsorption patterns, with more inflammation-related proteins (e.g., apolipoprotein A-II) present on the most hydrophobic PEM surface, while the most abundant protein on the hydrophilic PEM (apolipoprotein A-I) was related to anti-inflammatory roles. The pathway analysis revealed alterations in the mitogen-activated protein kinase (MAPK)-signaling pathway between the most hydrophilic and the most hydrophobic coating. The results show that the acute proinflammatory response to the more hydrophobic PEM surface is associated with the adsorption of inflammation-related proteins. Thus, this study provides insights into the interplay between material wettability, protein adsorption, and inflammatory response and may act as a basis for the rational design of biomaterials.


Assuntos
Anti-Inflamatórios/química , Materiais Revestidos Biocompatíveis/química , Citocinas/imunologia , Inflamação/imunologia , Polieletrólitos/química , Adsorção , Anti-Inflamatórios/farmacologia , Células Cultivadas , Materiais Revestidos Biocompatíveis/farmacologia , Citocinas/análise , Citocinas/biossíntese , Ensaio de Imunoadsorção Enzimática , Humanos , Interações Hidrofóbicas e Hidrofílicas , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Tamanho da Partícula , Polieletrólitos/farmacologia , Propriedades de Superfície , Molhabilidade
19.
Langmuir ; 26(19): 15516-22, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20809658

RESUMO

Polyelectrolyte multilayers (PEMs) produced by layer-by-layer (LbL) self-assembly find different applications. Often the PEMs are exposed to mechanical stress which they have to sustain. A correlation of the mechanical properties of PEM on macroscopic level with the ordering of polyelectrolyte molecules on molecular level is of interest. Our study is focused on the changes of orientation of the polyelectrolyte molecules when the PEM is under lateral mechanical stress. The PEM was prepared from pyrene (PY) labeled polystyrene sulfonate (PSS-PY) and poly(diallyldimethylammonium) chloride (PDDA) on sheets of polydimethylsiloxane (PDMS) rubber used as substrates. The LbL dipping technique was used for the formation of PEMs. A special stretching device was constructed which allows the fluorescence of the films under stress to be observed. The change in the fluorescence spectra which can be attributed to a PY ordering change from the PEM under stress of up to 10% was monitored. We observed that PEMs undergo a plastic deformation under external mechanical stretching. We conclude that under mechanical stress the polyelectrolyte molecules organized in polyelectrolyte multilayers experience an irreversible transition from the coiled to decoiled state.

20.
Langmuir ; 26(7): 4865-72, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20131773

RESUMO

We studied the process of thinning of thin liquid films stabilized with the nonionic surfactant n-dodecyl-beta-maltoside (beta-C(12)G(2)) with primary interest in interfacial diffusion processes during the thinning process dependent on surfactant concentration. The surfactant concentration in the film forming solutions was varied from 0.01 to 1.0 mM through the critical micellar concentration of 0.16 mM at constant electrolyte (NaCl) concentration, nominally 0.2 M. This assures the formation of Newton black films at the end of the thinning process. The velocity of thinning was analyzed combining previously developed theoretical approaches. From the model, which accounts for diffusion processes in the bulk of the film and in the interfaces, an analytical function was derived and fitted numerically to the experimental data. Quantitative information about the mobility of the surfactant molecules at the film surfaces could be obtained. We find that above a surfactant concentration of 0.12 mM (beta-C(12)G(2)) the film surfaces behave as immobile and nondeformable which decelerates the thinning process. This follows the predictions for Reynolds flow of liquid between two nondeformable disks. Moreover, we could apply the theory on free area dependent diffusion coefficients on our results and show that it is in reasonable ranges applicable on the used surfactant system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA