Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chimia (Aarau) ; 78(6): 403-414, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38946413

RESUMO

This review article delves into the growing field of solid-state batteries as a compelling alternative to conventional lithium-ion batteries. The article surveys ongoing research efforts at renowned Swiss institutions such as ETH Zurich, Empa, Paul Scherrer Institute, and Berner Fachhochschule covering various aspects, from a fundamental understanding of battery interfaces to practical issues of solid-state battery fabrication, their design, and production. The article then outlines the prospects of solid-state batteries, emphasizing the imperative practical challenges that remain to be overcome and highlighting Swiss research groups' efforts and research directions in this field.

2.
Sci Technol Adv Mater ; 23(1): 2018919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35069012

RESUMO

Solid-state Li-ion batteries based on Li-garnet Li7La3Zr2O12 (LLZO) electrolyte have seen rapid advances in recent years. These solid-state systems are poised to address the urgent need for safe, non-flammable, and temperature-tolerant energy storage batteries that concomitantly possess improved energy densities and the cycle life as compared to conventional liquid-electrolyte-based counterparts. In this vision article, we review present research pursuits and discuss the limitations in the employment of LLZO solid-state electrolyte (SSE) for solid-state Li-ion batteries. Particular emphasis is given to the discussion of pros and cons of current methodologies in the fabrication of solid-state cathodes, LLZO SSE, and Li metal anode layers. Furthermore, we discuss the contributions of the LLZO thickness, cathode areal capacity, and LLZO content in the solid-state cathode on the energy density of Li-garnet solid-state batteries, summarizing their required values for matching the energy densities of conventional Li-ion systems. Finally, we highlight challenges that must be addressed in the move towards eventual commercialization of Li-garnet solid-state batteries.

3.
Nano Lett ; 14(3): 1255-62, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24484409

RESUMO

We report colloidal synthesis of antimony (Sb) nanocrystals with mean size tunable in the 10-20 nm range and with narrow size distributions of 7-11%. In comparison to microcrystalline Sb, 10 and 20 nm Sb nanocrystals exhibit enhanced rate-capability and higher cycling stability as anode materials in rechargeable Li-ion and Na-ion batteries. All three particle sizes of Sb possess high and similar Li-ion and Na-ion charge storage capacities of 580-640 mAh g(-1) at moderate charging/discharging current densities of 0.5-1C (1C-rate is 660 mA g(-1)). At all C-rates (0.5-20C, e.g. current densities of 0.33-13.2 Ag(1-)), capacities of 20 nm Sb particles are systematically better than for both 10 nm and bulk Sb. At 20C-rates, retention of charge storage capacities by 10 and 20 nm Sb nanocrystals can reach 78-85% of the low-rate value, indicating that rate capability of Sb nanostructures can be comparable to the best Li-ion intercalation anodes and is so far unprecedented for Na-ion storage.

4.
Chimia (Aarau) ; 69(12): 724-728, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26842319

RESUMO

Sodium-ion batteries (SIBs) are potential low-cost alternatives to lithium-ion batteries (LIBs) because of the much greater natural abundance of sodium salts. However, developing high-performance electrode materials for SIBs is a challenging task, especially due to the ∼50% larger ionic radius of the Na(+) ion compared to Li(+), leading to vastly different electrochemical behavior. Metal phosphides such as FeP, CoP, NiP(2), and CuP(2) remain unexplored as electrode materials for SIBs, despite their high theoretical charge storage capacities of 900-1300 mAh g(-1). Here we report on the synthesis of metal phosphide nanocrystals (NCs) and discuss their electrochemical properties as anode materials for SIBs, as well as for LIBs. We also compare the electrochemical characteristics of phosphides with their corresponding sulfides, using the environmentally benign iron compounds, FeP and FeS(2), as a case study. We show that despite the appealing initial charge storage capacities of up to 1200 mAh g(-1), enabled by effective nanosizing of the active electrode materials, further work toward optimization of the electrode/electrolyte pair is needed to improve the electrochemical performance upon cycling.

5.
J Am Chem Soc ; 136(35): 12422-30, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25133552

RESUMO

We report a facile colloidal synthesis of gallium (Ga) nanoparticles with the mean size tunable in the range of 12-46 nm and with excellent size distribution as small as 7-8%. When stored under ambient conditions, Ga nanoparticles remain stable for months due to the formation of native and passivating Ga-oxide layer (2-3 nm). The mechanism of Ga nanoparticles formation is elucidated using nuclear magnetic resonance spectroscopy and with molecular dynamics simulations. Size-dependent crystallization and melting of Ga nanoparticles in the temperature range of 98-298 K are studied with X-ray powder diffraction, specific heat measurements, transmission electron microscopy, and X-ray absorption spectroscopy. The results point to delta (δ)-Ga polymorph as a single low-temperature phase, while phase transition is characterized by the large hysteresis and by the large undercooling of crystallization and melting points down to 140-145 and 240-250 K, respectively. We have observed size-tunable plasmon resonance in the ultraviolet and visible spectral regions. We also report stable operation of Ga nanoparticles as anode material for Li-ion batteries with storage capacities of 600 mAh g(-1), 50% higher than those achieved for bulk Ga under identical testing conditions.

6.
ChemSusChem ; 17(3): e202301285, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38051667

RESUMO

In the quest to replace liquid Li-ion electrolytes with safer and non-toxic solid counterparts for Li-ion batteries, polysiloxane polymers have attracted considerable attention as they offer low glass transition temperatures, stability with metallic lithium, and versatility in chemical functionalization of the backbone. Herein, we present the synthesis of Li-ion conductive polysiloxane-based polymers functionalized with 60 % nitrile groups per chain unit. The synthesis procedure is based on the reaction of poly-(dimethylsiloxane-co-methylvinylsiloxane) polymer with 2-cyanoethanethiol, followed by the addition of lithium bis (trifluoromethanesulfonyl) imide. The presented polysiloxane-based polymers exhibit exceptionally high ionic conductivity up to 0.375 mS cm-1 at 60 °C and Li+ ion transfer number of 0.73, one of the highest reported for polymer Li-ion conducting electrolytes. Their electrochemical performance was evaluated in both symmetrical and full-cell configurations to test the utility of synthesized polymers as electrolytes in Li-ion batteries.

7.
ACS Appl Mater Interfaces ; 16(10): 12353-12362, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38436097

RESUMO

Rechargeable garnet-based solid-state Li batteries hold immense promise as nonflammable, nontoxic, and high energy density energy storage systems, employing Li7La3Zr2O12 (LLZO) with a garnet-type structure as the solid-state electrolyte. Despite substantial progress in this field, the advancement and eventual commercialization of garnet-based solid-state Li batteries are impeded by void formation at the LLZO/Li interface at practical current densities and areal capacities beyond 1 mA cm-2 and 1 mAh cm-2, respectively, resulting in limited cycling stability and the emergence of Li dendrites. Additionally, developing a fabrication approach for thin LLZO electrolytes to achieve high energy density remains paramount. To address these critical challenges, herein, we present a facile methodology for fabricating self-standing, 50 µm thick, porous LLZO membranes with a small pore size of ca. 2.3 µm and an average porosity of 51%, resulting in a specific surface area of 1.3 µm-1, the highest reported to date. The use of such LLZO membranes significantly increases the Li/LLZO contact area, effectively mitigating void formation. This methodology combines two key elements: (i) the use of small pore formers of ca. 1.5 µm and (ii) the use of ultrafast sintering, which circumvents ceramics overdensification using rapid heating/cooling rates of ca. 50 °C per second. The fabricated porous LLZO membranes demonstrate exceptional cycling stability in a symmetrical Li/LLZO/Li cell configuration, exceeding 600 h of continuous operation at a current density of 0.1 mA cm-2.

8.
J Am Chem Soc ; 135(11): 4199-202, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23414392

RESUMO

We report a facile synthesis of highly monodisperse colloidal Sn and Sn/SnO2 nanocrystals with mean sizes tunable over the range 9-23 nm and size distributions below 10%. For testing the utility of Sn/SnO2 nanocrystals as an active anode material in Li-ion batteries, a simple ligand-exchange procedure using inorganic capping ligands was applied to facilitate electronic connectivity within the components of the nanocrystalline electrode. Electrochemical measurements demonstrated that 10 nm Sn/SnO2 nanocrystals enable high Li insertion/removal cycling stability, in striking contrast to commercial 100-150 nm powders of Sn and SnO2. In particular, reversible Li-storage capacities above 700 mA h g(-1) were obtained after 100 cycles of deep charging (0.005-2 V) at a relatively high current of 1000 mA h g(-1).

9.
ChemSusChem ; 16(4): e202201847, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36350785

RESUMO

Dual-ion hybrid capacitors (DIHCs) are a promising class of electrochemical energy storage devices intermediate between batteries and supercapacitors, exhibiting both high energy and power density, and generalizable across wide chemistries beyond lithium. In this study, a model carbon framework material with a periodic structure containing exclusively 1.2 nm width pores, zeolite-templated carbon (ZTC), was investigated as the positive electrode for the storage of a range of anions relevant to DIHC chemistries. Screening experiments were carried out across 21 electrolyte compositions within a common stable potential window of 3.0-4.0 V vs. Li/Li+ to determine trends in capacity as a function of anion and solvent properties. To achieve fast rate capability, a binary solvent balancing a high dielectric constant with a low viscosity and small molecular size was used; optimized full-cells based on LiPF6 in binary electrolyte exhibited 146 Wh kg-1 and >4000 W kg-1 energy and power densities, respectively.

10.
Adv Mater ; 35(49): e2304158, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37522526

RESUMO

Pyrochlore-type iron (III) hydroxy fluorides (Pyr-IHF) are appealing low-cost stationary energy storage materials due to the virtually unlimited supply of their constituent elements, their high energy densities, and fast Li-ion diffusion. However, the prohibitively high costs of synthesis and cathode architecture currently prevent their commercial use in low-cost Li-ion batteries. Herein, a facile and cost-effective dissolution-precipitation synthesis of Pyr-IHF from soluble iron (III) fluoride precursors is presented. High capacity retention by synthesized Pyr-IHF of >80% after 600 cycles at a high current density of 1 A g-1 is obtained, without elaborate electrode engineering. Operando synchrotron X-ray diffraction guides the selective synthesis of Pyr-IHF such that different water contents can be tested for their effect on the rate capability. Li-ion diffusion is found to occur in the 3D hexagonal channels of Pyr-IHF, formed by corner-sharing FeF6-x (OH)x octahedra.

11.
Adv Sci (Weinh) ; 10(8): e2205821, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36670066

RESUMO

Li dendrites form in Li7 La3 Zr2 O12 (LLZO) solid electrolytes due to intrinsic volume changes of Li and the appearance of voids at the Li metal/LLZO interface. Bilayer dense-porous LLZO membranes make for a compelling solution of this pertinent challenge in the field of Li-garnet solid-state batteries (SSB). Lithium is thus stored in the pores of the LLZO, thereby avoiding i) dynamic changes of the anode volume and ii) the formation of voids during Li stripping due to increased surface area of the Li/LLZO interface. The dense layer then additionally reduces the probability of short circuits during cell charging. In this work, a method for producing such bilayer membranes utilizing sequential tape-casting of porous and dense layers is reported. The minimum attainable thicknesses are 8-10 µm for dense and 32-35 µm for porous layers, enabling gravimetric and volumetric energy densities of Li-garnet SSBs of 279 Wh kg-1 and 1003 Wh L-1 , respectively. Bilayer LLZO membranes in symmetrical cell configuration exhibit high critical current density up to 6 mA cm-2 and cycling stability of over 160 cycles at a current density of 0.5 mA cm-2 at an areal capacity limitation of 0.25 mAh cm-2 .

12.
Sci Rep ; 12(1): 1177, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064183

RESUMO

Replacement of Li-ion liquid-state electrolytes by solid-state counterparts in a Li-ion battery (LIB) is a major research objective as well as an urgent priority for the industry, as it enables the use of a Li metal anode and provides new opportunities to realize safe, non-flammable, and temperature-resilient batteries. Among the plethora of solid-state electrolytes (SSEs) investigated, garnet-type Li-ion electrolytes based on cubic Li7La3Zr2O12 (LLZO) are considered the most appealing candidates for the development of future solid-state batteries because of their low electronic conductivity of ca. 10-8 S cm-1 (RT) and a wide electrochemical operation window of 0-6 V vs. Li+/Li. However, high LLZO density (5.1 g cm-3) and its lower level of Li-ion conductivity (up to 1 mS cm-1 at RT) compared to liquid electrolytes (1.28 g cm-3; ca. 10 mS cm-1 at RT) still raise the question as to the feasibility of using solely LLZO as an electrolyte for achieving competitive energy and power densities. In this work, we analyzed the energy densities of Li-garnet all-solid-state batteries based solely on LLZO SSE by modeling their Ragone plots using LiCoO2 as the model cathode material. This assessment allowed us to identify values of the LLZO thickness, cathode areal capacity, and LLZO content in the solid-state cathode required to match the energy density of conventional lithium-ion batteries (ca. 180 Wh kg-1 and 497 Wh L-1) at the power densities of 200 W kg-1 and 600 W L-1, corresponding to ca. 1 h of battery discharge time (1C). We then discuss key challenges in the practical deployment of LLZO SSE in the fabrication of Li-garnet all-solid-state batteries.

13.
Commun Chem ; 5(1): 77, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36698017

RESUMO

The search for cost-effective stationary energy storage systems has led to a surge of reports on novel post-Li-ion batteries composed entirely of earth-abundant chemical elements. Among the plethora of contenders in the 'beyond lithium' domain, the aluminum-sulfur (Al-S) batteries have attracted considerable attention in recent years due to their low cost and high theoretical volumetric and gravimetric energy densities (3177 Wh L-1 and 1392 Wh kg-1). In this work, we offer an overview of historical and present research pursuits in the development of Al-S batteries with particular emphasis on their fundamental problem-the dissolution of polysulfides. We examine both experimental and computational approaches to tailor the chemical interactions between the sulfur host materials and polysulfides, and conclude with our view on research directions that could be pursued further.

14.
Commun Chem ; 5(1): 6, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36697568

RESUMO

Towards enhancement of the energy density of Li-ion batteries, BiF3 has recently attracted considerable attention as a compelling conversion-type cathode material due to its high theoretical capacity of 302 mAh g-1, average discharge voltage of ca. 3.0 V vs. Li+/Li, the low theoretical volume change of ca. 1.7% upon lithiation, and an intrinsically high oxidative stability. Here we report a facile and scalable synthesis of phase-pure and highly crystalline orthorhombic BiF3 via thermal decomposition of bismuth(III) trifluoroacetate at T = 300 °C under inert atmosphere. The electrochemical measurements of BiF3 in both carbonate (LiPF6-EC/DMC)- and ionic liquid-based (LiFSI-Pyr1,4TFSI) Li-ion electrolytes demonstrated that ionic liquids improve the cyclic stability of BiF3. In particular, BiF3 in 4.3 M LiFSI-Pyr1,4TFSI shows a high initial capacity of 208 mA g-1 and capacity retention of ca. 50% over at least 80 cycles at a current density of 30 mA g-1.

15.
Commun Chem ; 3(1): 120, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36703337

RESUMO

In the search for sustainable energy storage systems, aluminum dual-ion batteries have recently attracted considerable attention due to their low cost, safety, high energy density (up to 70 kWh kg-1), energy efficiency (80-90%) and long cycling life (thousands of cycles and potentially more), which are needed attributes for grid-level stationary energy storage. Overall, such batteries are composed of aluminum foil as the anode and various types of carbonaceous and organic substances as the cathode, which are immersed in an aluminum electrolyte that supports efficient and dendrite-free aluminum electroplating/stripping upon cycling. Here, we review current research pursuits and present the limitations of aluminum electrolytes for aluminum dual-ion batteries. Particular emphasis is given to the aluminum plating/stripping mechanism in aluminum electrolytes, and its contribution to the total charge storage electrolyte capacity. To this end, we survey the prospects of these stationary storage systems, emphasizing the practical hurdles of aluminum electrolytes that remain to be addressed.

16.
Sci Rep ; 10(1): 2554, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054956

RESUMO

To maximize the anodic charge storage capacity of Li-ion and Na-ion batteries (LIBs and SIBs, respectively), the conversion-alloying-type Sb2S3 anode has attracted considerable interest because of its merits of a high theoretical capacity of 946 mAh g-1 and a suitable anodic lithiation/delithiation voltage window of 0.1-2 V vs. Li+/Li. Recent advances in nanostructuring of the Sb2S3 anode provide an effective way of mitigating the challenges of structure conversion and volume expansion upon lithiation/sodiation that severely hinder the Sb2S3 cycling stability. In this context, we report uniformly sized colloidal Sb2S3 nanoparticles (NPs) as a model Sb2S3 anode material for LIBs and SIBs to investigate the effect of the primary particle size on the electrochemical performance of the Sb2S3 anode. We found that compared with microcrystalline Sb2S3, smaller ca. 20-25 nm and ca. 180-200 nm Sb2S3 NPs exhibit enhanced cycling stability as anode materials in both rechargeable LIBs and SIBs. Importantly, for the ca. 20-25 nm Sb2S3 NPs, a high initial Li-ion storage capacity of 742 mAh g-1 was achieved at a current density of 2.4 A g-1. At least 55% of this capacity was retained after 1200 cycles, which is among the most stable performance Sb2S3 anodes for LIBs.

17.
Chem Commun (Camb) ; 56(89): 13872-13875, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33090131

RESUMO

Towards enhancement of the power density of Li-ion batteries (LIBs), antimony-based intermetallic compounds have recently attracted considerable attention as compelling anode materials owing to their high rate capability as compared to state-of-the-art graphite anodes. Here we report a facile colloidal synthesis of monodisperse CoSb nanocrystals (NCs) as a model intermetallic anode material for LIBs via the reaction between Co NCs and SbCl3 in oleylamine under reducing conditions. We found that ca. 20 nm CoSb NCs exhibit enhanced cycling stability as compared to larger ca. 40 nm CoSb NCs and Sb NCs with size on the order of 20 nm.

18.
Nanoscale ; 12(25): 13540-13547, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32555828

RESUMO

Silicon oxycarbide (SiOC) has recently regained attention in the field of Li-ion batteries, owing to its effectiveness as a host matrix for nanoscale anode materials alloying with Li. The SiOC matrix, itself providing a high Li-ion storage capacity of 600 mA h g-1, assists in buffering volumetric changes upon lithiation and largely suppresses the formation of an unstable solid-electrolyte interface. Herein, we present the synthesis of homogeneously embedded Sb nanoparticles in a SiOC matrix with the size of 5-40 nm via the pyrolysis of a preceramic polymer. The latter is obtained through the Pt-catalyzed gelation reaction of Sb 2-ethylhexanoate and a poly(methylhydrosiloxane)/divinylbenzene mixture. The complete miscibility of these precursors was achieved by the functionalization of poly(methylhydrosiloxane) with apolar divinyl benzene side-chains. We show that anodes composed of SiOC/Sb exhibit a high rate capability, delivering charge storage capacity in the range of 703-549 mA h g-1 at a current density of 74.4-2232 mA g-1. The impact of Sb on the Si-O-C bonding and on free carbon content of SiOC matrix, along with its concomitant influence on Li-ion storage capacity of SiOC was assessed by Raman and 29Si and 7Li solid-state NMR spectroscopies.

19.
Sci Rep ; 9(1): 6613, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036858

RESUMO

We report a simple one-pot synthesis of uniform transition metal difluoride MF2 (M = Fe, Mn, Co) nanorods based on transition metal trifluoroacetates (TMTFAs) as single-source precursors. The synthesis of metal fluorides is based on the thermolysis of TMTFAs at 250-320 °C in trioctylphosphine/trioctylphosphine oxide solvent mixtures. The FeF2 nanorods were converted into FeF3 nanorods by reaction with gaseous fluorine. The TMTFA precursors are also found to be suitable for the synthesis of colloidal transition metal phosphides. Specifically, we report that the thermolysis of a cobalt trifluoroacetate complex in trioctylphosphine as both the solvent and the phosphorus source can yield 20 nm long cobalt phosphide nanorods or, 3 nm large cobalt phosphide nanoparticles. We also assess electrochemical lithiation/de-lithiation of the obtained FeF2 and FeF3 nanomaterials.

20.
Sci Rep ; 9(1): 7988, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142752

RESUMO

Rechargeable magnesium batteries are appealing as safe, low-cost systems with high-energy-density storage that employ predominantly dendrite-free magnesium metal as the anode. While significant progress has been achieved with magnesium electrolytes in recent years, the further development of Mg-ion batteries, however, is inherently limited by the lack of suitable cathode materials, mainly due to the slow diffusion of high-charge-density Mg-ions in the intercalation-type host structures and kinetic limitations of conversion-type cathodes that often causes poor cyclic stability. Nanostructuring the cathode materials offers an effective means of mitigating these challenges, due to the reduced diffusion length and higher surface areas. In this context, we present the highly reversible insertion of Mg-ions into nanostructured conversion-type CuS cathode, delivering high capacities of 300 mAh g-1 at room temperature and high cyclic stability over 200 cycles at a current density of 0.1 A g-1 with a high coulombic efficiency of 99.9%. These materials clearly outperform bulk CuS, which is electrochemically active only at an elevated temperature of 50 °C. Our results not only point to the important role of nanomaterials in the enhancement of the kinetics of conversion reactions but also suggest that nanostructuring should be used as an integral tool in the exploration of new cathodes for multivalent, i.e., (Mg, Ca, Al)-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA