Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36991915

RESUMO

Due to the relatively low optical power of a liquid lens, it is usually difficult to achieve a large zoom ratio and a high-resolution image simultaneously in an optofluidic zoom imaging system. We propose an electronically controlled optofluidic zoom imaging system combined with deep learning, which achieves a large continuous zoom change and a high-resolution image. The zoom system consists of an optofluidic zoom objective and an image-processing module. The proposed zoom system can achieve a large tunable focal length range from 4.0 mm to 31.3 mm. In the focal length range of 9.4 mm to 18.8 mm, the system can dynamically correct the aberrations by six electrowetting liquid lenses to ensure the image quality. In the focal length range of 4.0-9.4 mm and 18.8-31.3 mm, the optical power of a liquid lens is mainly used to enlarge the zoom ratio, and deep learning enables the proposed zoom system with improved image quality. The zoom ratio of the system reaches 7.8×, and the maximum field of view of the system can reach ~29°. The proposed zoom system has potential applications in camera, telescope and so on.

2.
Opt Express ; 29(2): 2135-2141, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726414

RESUMO

We propose a zoom liquid lens employing a multifocal Fresnel zone plate. The proposed lens has two optical surfaces: liquid-liquid interface and Fresnel zone plate. The Fresnel zone plate is designed to have a multifocal point and an increased depth of focus. Therefore, the proposed lens has two obvious advantages. Due to increased depth of focus, the proposed lens can realize zooming using only one tunable liquid-liquid interface, which is not available for conventional liquid lens. Thus, it is possible to remove conventional zooming mechanisms from cameras. Besides, the focal length tuning range is also increased, and a lens system based on the proposed lens can simultaneously collect two images with different magnifications. We present the design, fabrication and characterization of the proposed lens. The shortest positive and negative focal length are ∼17.5mm and ∼-34.5mm and the diameter is 5mm. The zoom ratio of the proposed lens reaches ∼1.48×. Our results confirm that the proposed lens has widespread applications in imaging system.

3.
Sci Rep ; 12(1): 18996, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347882

RESUMO

Wide field of view (FOV) images and magnified images can be taken simultaneously by dual-sensor imaging systems. Here, we propose an approach for creating a bifocal flat lens with different imaging characteristics of its two foci, which makes dual-sensor imaging systems more integrated and miniaturized. That is, two special parts of two different conventional ZP are extracted and then combine the two elements in a specific way. So that there are two foci with different characteristics along the optical axis, one is long focus with higher resolution, the other is short focus with long depth of focus (DOF). Under the proposed approach, a thin and light bifocal diffractive lens (BDL) with thickness of 0.6 µm is developed. The long and short focal lengths of the BDL are ~ 81 mm and ~ 27 mm, respectively, with a diameter of 6 mm. We experimentally demonstrate that the long focus of the BDL is capable of taking high-resolution magnified images, and its resolution is up to 21.90″. The short focus is able to take wide FOV with long DOF images, and two objects spread 2880 mm apart can be imaged clearly. The experiment results demonstrate that all of these metrics are better than those of a conventional refractive lens.


Assuntos
Óculos , Óptica e Fotônica , Refração Ocular
4.
Sci Rep ; 12(1): 11015, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773323

RESUMO

Extending the depth of field (DOF) is especially essential in thick and 3D sample imaging. However, it's difficult to achieve both large DOF and high resolution in a zoom microscope. Currently, the use of optical sectioning to expand DOF still has the problem of inconstant magnification. Here, we develop an extended the depth of field (EDOF) and zoom microscope, which can realize EDOF with constant magnification and high resolution. Besides, the proposed microscope can achieve optical axial scanning at different NA and magnifications in real time without any mechanical movement. The proposed varifocal lens is employed to realize optical axial scanning, zooming, and keeping constant magnification when extending the DOF. Experimental results show that the proposed microscope can realize a continuous optical zoom of 10-40×, NA from 0.14 to 0.54, and the DOF of microscope can be extended to 1.2 mm.

5.
Sci Rep ; 10(1): 14644, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887926

RESUMO

The conventional microscope has discrete magnification and slow response time in zoom process, which is difficult to capture the dynamic activity of the live specimen. We demonstrate an adaptive microscope employing a tunable objective and a tunable eyepiece with large zooming range. The tunable objective consists of three glass lenses and four electrowetting liquid lenses. The tunable eyepiece consists of an achromatic eyepiece and an electrowetting liquid lens. The focal point between the objective and the eyepiece is designed to be tunable, which are controlled by voltages. Thus, the tuning range is relatively large. We fabricate the adaptive microscope and observe the specimen. In the experiment, the magnification of the microscope changes continuously from ~ 59.1 × to ~ 159.2 × , and the largest numerical aperture is ~ 0.212. The tunable eyepiece can release the back focal length of the tunable objective, which increases the zoom range of the microscope. No mechanical movement is required and the aberrations can be corrected over a wide wavelength range. Thus, the proposed adaptive microscope has a potential application in biological research and clinical medical examination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA