Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
J Am Chem Soc ; 146(15): 10489-10497, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38584354

RESUMO

We describe the synthesis and characterization of a versatile platform for gold functionalization, based on self-assembled monolayers (SAMs) of distal-pyridine-functionalized N-heterocyclic carbenes (NHC) derived from bis(NHC) Au(I) complexes. The SAMs are characterized using polarization-modulation infrared reflectance-absorption spectroscopy, surface-enhanced Raman spectroscopy, and X-ray photoelectron spectroscopy. The binding mode is examined computationally using density functional theory, including calculations of vibrational spectra and direct comparisons to the experimental spectroscopic signatures of the monolayers. Our joint computational and experimental analyses provide structural information about the SAM binding geometries under ambient conditions. Additionally, we examine the reactivity of the pyridine-functionalized SAMs toward H2SO4 and W(CO)5(THF) and verify the preservation of the introduced functionality at the interface. Our results demonstrate the versatility of N-heterocyclic carbenes as robust platforms for on-surface acid-base and ligand exchange reactions.

2.
Environ Res ; 258: 119371, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876420

RESUMO

Cu2ZnSnS4 (CZTS) was synthesized following hot injection method and the process was optimized by varying temperature conditions. Four samples at different temperatures viz., 200, 250, 300 and 350 °C were prepared and analyzed using different characterization techniques. Based on the correlation between XRD, Raman and XPS, we conclude that the formation of ZnS and SnS2 occurs at 350 °C but at 200 °C there is no breakdown of the complex as per XRD. According to Raman and XPS analysis, as the temperature rises, the bonds between the metals become weaker, which is visibly seen in Raman and XPS due to the minor peaks of copper sulfide. Scanning electron microscopic analysis confirmed nanometric particles which increase in size with temperature. The photocatalytic evaluation showed that CZTS synthesized at 200 °C performed efficiently in the removal of the two colorants, methylene blue and Rhodamine 6G, achieving 92.80% and 90.65%, respectively. The photocatalytic degradation efficiencies decreased at higher temperatures due to bigger sized CZTS particles as confirmed by SEM results. Computational simulations confirm that CZTS has a highly negative energy -25,764 Ry, confirming its structural stability and higher covalent than ionic character.

3.
Angew Chem Int Ed Engl ; 63(30): e202405123, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38714495

RESUMO

In this work, we investigate trion dynamics occurring at the heterojunction between organometallic molecules and a monolayer transition metal dichalcogenide (TMD) with transient electronic sum frequency generation (tr-ESFG) spectroscopy. By pumping at 2.4 eV with laser pulses, we have observed an ultrafast hole transfer, succeeded by the emergence of charge-transfer trions. This observation is facilitated by the cancellation of ground state bleach and stimulated emission signals due to their opposite phases, making tr-ESFG especially sensitive to the trion formation dynamics. The presence of charge-transfer trion at molecular functionalized TMD monolayers suggests the potential for engineering the local electronic structures and dynamics of specific locations on TMDs and offers a potential for transferring unique electronic attributes of TMD to the molecular layers.

4.
J Am Chem Soc ; 145(5): 3238-3247, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36706437

RESUMO

A well-known catalyst, fac-Re(4,4'-R2-bpy)(CO)3Cl (bpy = bipyridine; R = COOH) (ReC0A), has been widely studied for CO2 reduction; however, its photocatalytic performance is limited due to its narrow absorption range. Quantum dots (QDs) are efficient light harvesters that offer several advantages, including size tunability and broad absorption in the solar spectrum. Therefore, photoinduced CO2 reduction over a broad range of the solar spectrum could be enabled by ReC0A catalysts heterogenized on QDs. Here, we investigate interfacial electron transfer from Cd3P2 QDs to ReC0A complexes covalently bound on the QD surface, induced by photoexcitation of the QD. We explore the effect of triethylamine, a sacrificial hole scavenger incorporated to replenish the QD with electrons. Through combined transient absorption spectroscopic and computational studies, we demonstrate that electron transfer from Cd3P2 to ReC0A can be enhanced by a factor of ∼4 upon addition of triethylamine. We hypothesize that the rate enhancement is a result of triethylamine possibly altering the energetics of the Cd3P2-ReC0A system by interacting with the quantum dot surface, deprotonation of the quantum dot, and preferential solvation, resulting in a shift of the conduction band edge to more negative potentials. We also observe the rate enhancement in other QD-electron acceptor systems. Our findings provide mechanistic insights into hole scavenger-quantum dot interactions and how they may influence photoinduced interfacial electron transfer processes.

5.
J Chem Phys ; 158(7): 074703, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36813711

RESUMO

A highly active heterogenized molecular CO2 reduction catalyst on a conductive carbon support is investigated to identify if its improved catalytic activity can be attributed to strong electronic interactions between catalyst and support. The molecular structure and electronic character of a [Re+1(tBu-bpy)(CO)3Cl] (tBu-bpy = 4,4'-tert-butyl-2,2'-bipyridine) catalyst deposited on multiwalled carbon nanotubes are characterized using Re L3-edge x-ray absorption spectroscopy under electrochemical conditions and compared to the homogeneous catalyst. The Re oxidation state is characterized from the near-edge absorption region, while structural changes of the catalyst are assessed from the extended x-ray absorption fine structure under reducing conditions. Chloride ligand dissociation and a Re-centered reduction are both observed under applied reducing potential. The results confirm weak coupling of [Re(tBu-bpy)(CO)3Cl] with the support, since the supported catalyst exhibits the same oxidation changes as the homogeneous case. However, these results do not preclude strong interactions between a reduced catalyst intermediate and the support, preliminarily investigated here using quantum mechanical calculations. Thus, our results suggest that complicated linkage schemes and strong electronic interactions with the initial catalyst species are not required to improve the activity of heterogenized molecular catalysts.

6.
J Am Chem Soc ; 144(31): 14330-14338, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35905473

RESUMO

The characterization of electrical double layers is important since the interfacial electric field and electrolyte environment directly affect the reaction mechanisms and catalytic rates of electrochemical processes. In this work, we introduce a spectroscopic method based on a Stark shift ruler that enables mapping the electric field strength across the electric double layer of electrode/electrolyte interfaces. We use the tungsten-pentacarbonyl(1,4-phenelenediisocyanide) complex attached to the gold surface as a molecular ruler. The carbonyl (CO) and isocyanide (NC) groups of the self-assembled monolayer (SAM) provide multiple vibrational reporters situated at different distances from the electrode. Measurements of Stark shifts under operando electrochemical conditions and direct comparisons to density functional theory (DFT) simulations reveal distance-dependent electric field strength from the electrode surface. This electric field profile can be described by the Gouy-Chapman-Stern model with Stern layer thickness of ∼4.5 Å, indicating substantial solvent and electrolyte penetration within the SAM. Significant electro-induction effect is observed on the W center that is ∼1.2 nm away from the surface despite rapid decay of the electric field (∼90%) within 1 nm. The applied methodology and reported findings should be particularly valuable for the characterization of a wide range of microenvironments surrounding molecular electrocatalysts at electrode interfaces and the positioning of electrocatalysts at specific distances from the electrode surface for optimal functionality.


Assuntos
Eletricidade , Eletrólitos , Eletrodos , Ouro , Vibração
7.
Acc Chem Res ; 52(5): 1289-1300, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31056907

RESUMO

Rhenium and manganese bipyridyl tricarbonyl complexes have attracted intense interest for their promising applications in photocatalytic and electrocatalytic CO2 reduction in both homogeneous and heterogenized systems. To date, there have been extensive studies on immobilizing Re catalysts on solid surfaces for higher catalytic efficiency, reduced catalyst loading, and convenient product separation. However, in order for the heterogenized molecular catalysts to achieve the combination of the best aspects of homogeneous and heterogeneous catalysts, it is essential to understand the fundamental physicochemical properties of such heterogeneous systems, such as surface-bound structures of Re/Mn catalysts, substrate-adsorbate interactions, and photoinduced or electric-field-induced effects on Re/Mn catalysts. For example, the surface may act to (un)block substrates, (un)trap charges, (de)stabilize particular intermediates (and thus affect scaling relations), and shift potentials in different directions, just as protein environments do. The close collaboration between the Lian, Batista, and Kubiak groups has resulted in an integrated approach to investigate how the semiconductor or metal surface affects the properties of the attached catalyst. Synthetic strategies to achieve stable and controlled attachment of Re/Mn molecular catalysts have been developed. Steady-state, time-resolved, and electrochemical vibrational sum-frequency generation (SFG) spectroscopic studies have provided insight into the effects of interfacial structures, ultrafast vibrational energy relaxation, and electric field on the Re/Mn catalysts, respectively. Various computational methods utilizing density functional theory (DFT) have been developed and applied to determine the molecular orientation by direct comparison to spectroscopy, unravel vibrational energy relaxation mechanisms, and quantify the interfacial electric field strength of the Re/Mn catalyst systems. This Account starts with a discussion of the recent progress in determining the surface-bound structures of Re catalysts on semiconductor and Au surfaces by a combined vibrational SFG and DFT study. The effects of crystal facet, length of anchoring ligands, and doping of the semiconductor on the bound structures of Re catalysts and of the substrate itself are discussed. This is followed by a summary of the progress in understanding the vibrational relaxation (VR) dynamics of Re catalysts covalently adsorbed on semiconductor and metal surfaces. The VR processes of Re catalysts on TiO2 films and TiO2 single crystals and a Re catalyst tethered on Au, particularly the role of electron-hole pair (EHP)-induced coupling on the VR of the Re catalyst bound on Au, are discussed. The Account also summarizes recent studies in quantifying the electric field strength experienced by the catalytically active site of the Re/Mn catalyst bound on a Au electrode based on a combined electrochemical SFG and DFT study of the Stark tuning of the CO stretching modes of these catalysts. Finally, future research directions on surface-immobilized molecular catalyst systems are discussed.

8.
Inorg Chem ; 59(23): 16872-16881, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33197170

RESUMO

A new synthetic route to complexes of the type Ni(P2N2)22+ with highly functionalized phosphine substituents and the investigation of immobilization effects on these catalysts is reported. Ni(P2N2)22+ complexes have been extensively studied as homogeneous and surface-attached molecular electrocatalysts for the hydrogen evolution reaction (HER). A synthesis based on postsynthetic modification of PArBr2NPh2 was developed and is described here. Phosphonate-modified ligands and their corresponding nickel complexes were isolated and characterized. Subsequent deprotection of the phosphonic ester derivatives provided the first Ni(P2N2)22+ catalyst that can be covalently attached via pendent phosphonate groups to an electrode without involvement of the important pendent amine groups. Mesoporous TiO2 electrodes were surface modified by attachment of the new phosphonate functionalized Ni(P2N2)22+ complexes, and these provided electrocatalytic materials that proved to be competent and stable for sustained HER in aqueous solution at mild pH and low overpotential. We directly compared the new ligand to a previously reported complex that utilized the amine moiety for surface attachment. Using HER as the benchmark reaction, the P-attached catalyst showed a marginally (9-14%) higher turnover number than its N-attached counterpart.

9.
Inorg Chem ; 59(16): 11757-11769, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32799482

RESUMO

The stereodynamics of an ultrafast (picosecond) isomerization in a penta-coordinated ruthenium complex, Ru(S2C2(CF3)2)(CO)(PPh3)2, were characterized by density functional theory (DFT). The ruthenium complex crystallizes in two almost-square pyramidal (SP) forms. The violet form has an apical PPh3 ligand, the orange form has an apical CO ligand, and their solution displays three CO stretching frequencies. With 4 possible centers of chirality (1 ruthenium, 2 phosphines, and 1 dithiolate), there are 24 stereoisomers. DFT calculations of these stereoisomers show structures ranging from almost-perfect SP (τ5 ≈ 0) to structures significantly distorted toward trigonal bipyramidal (TBP) (τ5 ≈ 0.6). The stereoisomers fall neatly into three groups, with νCO ≈ 1960 cm-1, 1940 cm-1, and 1980 cm-1. These isomers were found to interconvert over relatively small barriers via Ru-S bond twisting, CF3 rotation, phenyl twisting, PPh3 rotation, and, in some cases, by coupled motions. The composite energy surface for each CO frequency group shows that interconversions among the low-energy structures are possible via both the direct and indirect pathways, while the indirect pathway via isomers in the νCO ≈ 1980 cm-1 group is more favorable, which is a result consistent with recent experimental work. This work provides the first complete mechanistic picture of the ultrafast isomerization of penta-coordinated, distorted SP, d6-transition-metal complexes.

10.
Inorg Chem ; 59(15): 10532-10539, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32674565

RESUMO

The anionic state of basic ruthenium acetate complexes of the type [Ru3O(OAc)6](CO)(L1)(L2) (L = 4-cyanopyridine, pyridine, and N,N-dimethylaminopyridine) feature pronounced optical transitions in the near-infrared region indicative of strongly coupled mixed-valence states. A series of these clusters was prepared and studied spectroscopically in tandem with density functional theory (DFT) computational results to construct an orbital structure-function description of how the electron density is shared between the ruthenium centers in this mixed-valent state. The mixed-valency manifests itself as a combination of the nonbonding atomic orbitals of the equivalent ruthenium centers, with increased energetic splitting between the orbitals with symmetries appropriate for more efficient electronic communication. This DFT-based model agrees with the Marcus-Hush description of mixed-valency, with the added knowledge that specific orbitals contribute to different degrees in the electronic coupling between two redox centers.

11.
J Am Chem Soc ; 141(43): 17270-17277, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31580669

RESUMO

The selective electrochemical reduction of CO2 to CO in water by a Re(tBu-bpy)(CO)3Cl catalyst incorporated into multi-walled carbon nanotubes (MWCNT) was investigated. Current densities of ∼4 mA/cm2 and selectivities (FECO) of 99% were achieved at -0.56 V vs RHE in CO2-saturated aqueous KHCO3 solutions. The Re(tBu-bpy)(CO)3Cl catalyst has been widely studied as a homogeneous catalyst in organic solvents. Supporting Re(tBu-bpy)(CO)3Cl on MWCNTs increases current densities, decreases overpotential, retains selectivity for reduction of CO2 to CO, and allows operation in water at pH = 7.3 compared to the molecular catalyst in acetonitrile solution. The Re/MWCNT electrocatalysts achieve TON > 5600 and TOF > 1.6 s-1. This electrocatalyst material is efficient, robust, simple to prepare, and scalable.

12.
J Am Chem Soc ; 141(38): 14961-14965, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31490687

RESUMO

We report the enhancement of photocatalytic performance by introduction of hydrogen-bonding interactions to a Re bipyridine catalyst and Ru photosensitizer system (ReDAC/RuDAC) by the addition of amide substituents, with carbon monoxide (CO) and carbonate/bicarbonate as products. This system demonstrates a more-than-3-fold increase in turnover number (TONCO = 100 ± 4) and quantum yield (ΦCO = 23.3 ± 0.8%) for CO formation compared to the control system using unsubstituted Ru photosensitizer (RuBPY) and ReDAC (TONCO = 28 ± 4 and ΦCO = 7 ± 1%) in acetonitrile (MeCN) with 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) as sacrificial reductant. In dimethylformamide (DMF), a solvent that disrupts hydrogen bonds, the ReDAC/RuDAC system showed a decrease in catalytic performance while the control system exhibited an increase, indicating the role of hydrogen bonding in enhancing the photocatalysis for CO2 reduction through supramolecular assembly. The similar properties of RuDAC and RuBPY demonstrated in lifetime measurements, spectroscopic analysis, and electrochemical and spectroelectrochemical studies revealed that the enhancement in photocatalysis is due not to differences in intrinsic properties of the catalyst or photosensitizer, but to hydrogen-bonding interactions between them.

13.
Inorg Chem ; 58(16): 10516-10526, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31247818

RESUMO

Redox-active proanions of the type B12(OCH2Ar)12 [Ar = C6F5 (1), 4-CF3C6H4 (2), 3,5-(CF3)2C6H3 (3)] are introduced in the context of an experimental and computational study of the visible-light-initiated polymerization of a family of styrenes. Neutral, air-stable proanions 1-3 were found to initiate styrene polymerization through single-electron oxidation under blue-light irradiation, resulting in polymers with number-average molecular weights (Mn) ranging from ∼6 to 100 kDa. Shorter polymer products were observed in the majority of experiments, except in the case of monomers containing 4-X (X = F, Cl, Br) substituents on the styrene monomer when polymerized in the presence of 1 in CH2Cl2. Only under these specific conditions are longer polymers (>100 kDa) observed, strongly supporting the formulation that reaction conditions significantly modulate the degree of ion pairing between the dodecaborate anion and cationic chain end. This also suggests that 1-3 behave as weakly coordinating anions (WCA) upon one-electron reduction because no incorporation of the cluster-based photoinitiators is observed in the polymeric products analyzed. Overall, this work is a conceptual realization of a single reagent that can serve as a strong photooxidant, subsequently forming a WCA.

14.
J Am Chem Soc ; 140(40): 12756-12759, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30265005

RESUMO

Electron transfer across a mixed-valent hydrogen-bonded self-dimer of oxo-centered triruthenium clusters bridged by a pair of 4(3 H)-pyrimidinones is reported. Spectroelectrochemical studies in methylene chloride reveal that 1 rapidly self-dimerizes upon one-electron reduction, forming the strongly coupled mixed-valent hydrogen-bonded dimer (12)-. In the mixed-valent state, significantly broadened, partially coalesced ν(CO) bands are observed, allowing estimation of the electron transfer rate ( kET) by an optical Bloch line shape analysis. Simulation of the FTIR line shapes provides an estimate of kET on the order of 1011 s-1, indicating a highly delocalized electronic structure across the hydrogen bonds. These findings are supported by the determination of the formation constant ( KMV) for (12)-, which is found to be on the order of 106 M-1, or nearly 4 orders of magnitude higher than that for the neutral isovalent dimer (12). This represents a stabilization of approximately 5.7 kcal/mol (1980 cm-1) arising from electron exchange across the hydrogen bonds in the mixed-valent state. Significantly, an enormous intensity enhancement of the amide ν(NH) band (3300 cm-1) of (12)- is observed, supporting strong mixing of the bridging ligand vibrational modes with the electronic wave function of the mixed-valent state. These findings demonstrate strong donor-bridge-acceptor coupling and that highly delocalized electronic structures can be attained in hydrogen-bonded systems, which are often considered to be too weakly bound to support strong electronic communication.

15.
J Am Chem Soc ; 140(50): 17643-17655, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30468391

RESUMO

Attaching molecular catalysts to metal and semiconductor electrodes is a promising approach to developing new catalytic electrodes with combined advantages of molecular and heterogeneous catalysts. However, the effect of the interfacial electric field on the stability, activity, and selectivity of the catalysts is often poorly understood due to the complexity of interfaces. In this work, we examine the strength of the interfacial field at the binding site of CO2 reduction catalysts including Re(S-2,2'-bipyridine)(CO)3Cl and Mn(S-2,2'-bipyridine)(CO)3Br immobilized on Au electrodes. The vibrational spectra are probed by sum frequency generation spectroscopy (SFG), showing pronounced potential-dependent frequency shifts of the carbonyl stretching modes. Calculations of SFG spectra and Stark tuning rates based on density functional theory allow for direct interpretation of the configurations of the catalysts bound to the surfaces and the influence of the interfacial electric field. We find that electrocatalysts supported on Au electrodes have tilt angles of about 65-75° relative to the surface normal with one of the carbonyl ligands in direct contact with the surface. Large interfacial electric fields of 108-109 V/m are determined through the analysis of experimental frequency shifts and theoretical Stark tuning rates of the symmetric CO stretching mode. These large electric fields thus significantly influence the CO2 binding site.

16.
Chemistry ; 23(36): 8619-8622, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28467613

RESUMO

A series of polymeric frameworks with functional assemblies were designed to alter the catalytic activity of covalently bound ReI electrocatalysts. Norbornenyl polymers containing positively charged quaternary ammonium salts, neutral phenyl, or negatively charged trifluoroborate groups were end-labelled with a ReI fac-tricarbonyl bipyridine electrocatalyst via cross metathesis. Electrochemical studies in acetonitrile under an inert atmosphere and with saturated CO2 indicate that the quaternary ammonium polymers exhibit a significantly lower potential for CO2 reduction to CO (ca. 300 mV), while neutral polymers behave consistently with what has been reported for the free, molecular catalyst. In contrast, the trifluoroborate polymers displayed a negative shift in potential and catalytic activity was not observed. It is demonstrated that a single catalytically active complex can be installed onto a charged polymeric framework, thereby achieving environmentally tuned reduction potentials for CO2 reduction. These materials may be useful as polymer-based precursors for preparing catalytic and highly ordered structures such as thin films, porous catalytic membranes, or catalytic nanoparticles.

17.
Langmuir ; 33(10): 2596-2602, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28207276

RESUMO

Semen-derived enhancer of virus infection (SEVI) fibrils are naturally abundant amyloid aggregates found in semen that facilitate viral attachment and internalization of human immunodeficiency virus (HIV) in cells, thereby increasing the probability of infection. Mature SEVI fibrils are composed of aggregated peptides exhibiting high ß-sheet secondary structural characteristics. Herein, we show that polymers containing hydrophobic side chains can interact with SEVI and reduce its ß-sheet content by ∼45% compared with the ß-sheet content of SEVI in the presence of polymers with hydrophilic side chains, as estimated by polarization modulation-infrared reflectance absorption spectroscopy measurements. A nanoparticle (NP) formulation of this hydrophobic polymer reduced SEVI-mediated HIV infection in TMZ-bl cells by 60% compared with the control treatment. Although these NPs lacked specific amyloid-targeting groups, thus requiring high concentrations to observe biological activity, the use of hydrophobic interactions to alter the secondary structure of amyloids represents a useful approach to neutralizing the SEVI function. These results could, therefore, have general implications in the design of novel materials that can modify the activity of amyloids associated with a variety of other neurological and systemic diseases.


Assuntos
Nanopartículas , Amiloide , Infecções por HIV , Conformação Proteica em Folha beta , Sêmen
18.
J Am Chem Soc ; 138(4): 1386-93, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26745814

RESUMO

Earth-abundant manganese bipyridine (bpy) complexes are well-established molecular electrocatalysts for proton-coupled carbon dioxide (CO2) reduction to carbon monoxide (CO). Recently, a bulky bipyridine ligand, 6,6'-dimesityl-2,2'-bipyridine (mesbpy), was utilized to significantly lower the potential necessary to access the doubly reduced states of these manganese catalysts by eliminating their ability to dimerize after one-electron reduction. Although this Mn mesbpy catalyst binds CO2 at very low potentials, reduction of a resulting Mn(I)-COOH complex at significantly more negative potentials is required to achieve fast catalytic rates. Without reduction of Mn(I)-COOH, catalysis occurs slowly via a alternate catalytic pathway-protonation of Mn(I)-COOH to form a cationic tetracarbonyl complex. We report the use of Lewis acids, specifically Mg(2+) cations, to significantly increase the rate of catalysis (by over 10-fold) at these low overpotentials (i.e., the same potential as CO2 binding). Reduction of CO2 occurs at one of the lowest overpotentials ever reported for molecular electrocatalysts (η = 0.3-0.45 V). With Mg(2+), catalysis proceeds via a reductive disproportionation reaction of 2CO2 + 2e(-) → CO and CO3(2-). Insights into the catalytic mechanism were gained by using variable concentration cyclic voltammetry, infrared spectroelectrochemistry, and bulk electrolysis studies. The catalytic Tafel behavior (log turnover frequency vs overpotential relationship) of [Mn(mesbpy)(CO)3(MeCN)](OTf) with added Mg(2+) is compared with those of other commonly studied CO2 reduction catalysts.

19.
J Am Chem Soc ; 138(26): 8184-93, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27258781

RESUMO

The use of hydrogen-bonding interactions to direct the noncovalent assembly of a Re-based bimetallic supramolecular electrocatalyst containing either tyrosine or phenylalanine residues is reported. Computational modeling and spectroelectrochemical characterization indicate that under catalytic conditions the phenol residues of tyrosine can act both as pendant proton sources and participate in the structural assembly of the bimetallic active species. As a result, an increased rate of catalysis is observed experimentally for the reductive disproportionation of CO2 to CO and CO3(2-) by a tyrosine-modified complex in comparison to a control complex containing phenylalanine residues. These findings demonstrate that noncovalent assembly is a powerful method for generating new bimetallic electrocatalyst systems where the choice of substituent can be used to both control structural assembly and introduce cocatalytic moieties.


Assuntos
Dióxido de Carbono/química , Compostos Organometálicos/química , Rênio/química , Tirosina/química , Catálise , Cristalografia por Raios X , Eletroquímica , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Conformação Molecular , Oxirredução
20.
J Am Chem Soc ; 138(46): 15110-15113, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27933880

RESUMO

In electrochemical processes, an oxidation half-reaction is always paired with a reduction half-reaction. Although systems for reactions such as the reduction of CO2 can be coupled to water oxidation to produce O2 at the anode, large-scale O2 production is of limited value. One may replace a low-value half-reaction with a compatible half-reaction that can produce a valuable chemical compound and operate at a lower potential. In doing so, both the anodic and cathodic half-reactions yield desirable products with a decreased energy demand. Here we demonstrate a paired electrolysis in the case of the oxidative condensation of syringaldehyde and o-phenylenediamine to give 2-(3,5-dimethoxy-4-hydroxyphenyl)benzimidazole coupled with the reduction of CO2 to CO mediated by molecular electrocatalysts. We also present general principles for evaluating current-voltage characteristics and power demands in paired electrolyzers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA